1. Cho hình thang ABCD có góc A = góc D = 90 độ , đáy nhỏ AB = a , cạnh bên BC = 2 a . Gọi M , N lần lượt là trung điểm AD , AB
a / Tính số đo các góc ABC , BAN
b/ Chứng minh tam giác NAD đều
c/ Tính MN theo a
2. a/ Tính các góc A , góc B của hình thang ABCD ( AB // CD ) biết góc C = 70 độ , góc D = 40 độ
b/ Cho hình thang ABCD có AB // CD và góc A = góc D . Chứng minh rằng ABCD là hình thang vuông cà AC^2 + BD^2 = AB^2 + CD^2 + 2AD^2
3. Cho tứ giác ABCD :
a/ Chứng minh rằng AB + CD < AC + BD
b/ Cho biết AB + BD < hoặc = AC + CD
Chứng minh rằng AB < AC
4. Cho hình thang ABCD có AC vuông góc BD . CHứng minh rằng :
a/ AB^2 + CD^2 = AD^2 + BC^2
b/ ( AB + CD )^2 = AC^2 + BD^2
a/ Tính các góc A , góc B của hình thang ABCD ( AB // CD ) biết góc C = 70 độ , góc D = 40 độ
b/ Cho hình thang ABCD có AB // CD và góc A = góc D . Chứng minh rằng ABCD là hình thang vuông cà AC^2 + BD^2 = AB^2 + CD^2 + 2AD^2
1) cho hình thang ABCD (AB//CD) có góc C < góc D. Chứng minh: AC>BD
2)cho hình thang ABCD (AB//CD) có E là trung điểm BC và góc AED=90 độ. Chứng minh DE là phân giác góc ADC
Cho hình thang ABCD (AB//CD); góc C= góc D. Chứng minh rằng AD=BC; AC=BD.
Cho hình thang ABCD (AB//CD), góc C < góc D. Chứng minh AC>BD.
cho hình thang ABCD (AB // CD ) có góc C < góc D. chứng minh AC > BD
Cho hình thang ABCD (AB//CD) có góc C nhỏ hơn góc D. Chứng minh AC>BD
Cho hình thang ABCD (AB//CD). Kẻ đường thẳng vuông góc với AC tại C và đường thẳng vuông góc với BD tại D, hai đường thẳng này cắt nhau tại E. Chứng minh rằng nếu EC = ED thì hình thang ABCD là hình thang cân.
Cho hình thang ABCD (AB//CD) có AB<CD ; AD=BC=BC; GÓC A+ GÓC C=\(180^O\)
A CHỨNG MINH RẰNG BD LÀ TIA PHÂN GIÁC CỦA ADC
B CHỨNG MINH AC= BD
C GIẢ SỬ CD- 2AB TÍNH CÁC GÓC CỦA HÌNH THANG ABCD