cho hình thang abcd vuông ở a và d có ab//cd, ab <cd, ad=cd. e là gia điểm của ad và bc. cm 1/ad bình= 1/ce bình +1/bc bình
Toán lớp 9
cho hình thang abcd vuông ở a và d có ab//cd, ab <cd, ad=cd. e là gia điểm của ad và bc. cm 1/ad bình= 1/ce bình +1/bc bình
Toán lớp 9
cho hình thang ABCD đấy nhỏ AB,AD vuông góc với CD vẽ đường cho BH trên tia đối của tia DA lấy điểm K sao cho DK=CH và AD cắt BC tại E
a)Cm BC vuông góc với CK
b)Cm 1/CD^2 =1/CE^2+1/CB^2
Giúp mình cách giải luôn nha
Câu 1: Hình thang ABCD (AB // CD) có AC vuông góc BD tại O. Biết AB=3,5 cm; AD=5,2 cm. Gọi M là trung điểm CD. Tính diện tích AMO.
Câu 2: Cho hình thang cân ABCD có đáy nhỏ AB=7cm; BD vuông góc BC. Kẻ BH vuông góc CD(với H thuộc CD). Biết BH=5cm. Tính diện tích ABCD và góc BCD.
Câu 3: Cho hình thang cân ABCD có đáy nhỏ AB=BC= \(\frac{1}{2}\)CD và AC=4cm. Tính góc C và diện tích ABCD.
Câu 4: Cho hình thang cân ABCD có AB//CD, BC=12cm, AC=15cm. Tính góc C và diện tích ABCD.
Câu 5: Cho hình thang vuông ABCD (vuông ở A và B0 có E là trung điểm CD; AE cắt BC tại F. Biết AD=1,5 cm; BC=2,7 cm; AB=2cm. Tính các góc và diện tích của tam giác BEF.
1 , Cho hình vuông ABCD có góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HD
a , Chứng minh rằng ABMN là hình bình hành .
b , Chứng minh rằng N là trực tâm của tam giác AMD
c , Chứng minh rằng góc BMD = 90 độ
d , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .
2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường chéo AC , BD cắt nhau tại O . Vẽ DE , DF lần lượt vuông góc với AB và BC . Chứng minh rằng tam giác EOF cân.
3 , Cho hình thang ABCD có góc A = 60 độ . Trên tia AD lấy M , trên tia Bc lấy N sao cho AM = DN
a , Chứng minh rằng tam giác ADM = tam giác DBN
b , Chứng minh rằng góc MBN = 60 độ
c , Chứng minh rằng tam giác BNM đều .
4 , Cho hình vuông ABCD , vẽ góc xAy = 90 độ . Ax cắt BC ở M , Ay cắt CD ở N
a , Chứng minh rằng tam giác MAN vuông cân
b , Vẽ hình bình hành AMFN có O là giao điểm 2 đường chéo . Chứng minh rằng OA = OC = \(\frac{1}{2}\) AF và tam giác ACF vuông tại C .
5 , Cho hình vuông ABCD . Trên BC lấy điểm E . Từ A kẻ vuông góc với AE cắtt CD tạ F . Gọi I là trung điểm của EF . M là giao điểm của AI và CD . Qua E kẻ đường thẳng song song với CD cắt AI tại N .
a , Chứng minh rằng MENF là hình thang
b , Chứng minh rằng chu vi tam giác CME không đổi khi E chuyển động trên BC .
cho hình thang vuônh abcd vuông ở a và d, có đáy ab=7cm, cd=4xm, ad=4cm
a) tính cạnh bên bc
b) trên ad lấy điểm e sao cho ce=bc chứng minh ec vuông góc bc và tính diện tích tứ giác abce
c) hai đường thẳng ad và bc cắt nhau tại s tính sc
d) tính các góc b và c của hình thang
Cho hình tahng ABCD, đáy nhỏ AB, AD vuông CD và AD=CD. Vẽ đường cao BH. Trên tia đối của tia DA lấy K sao cho DK=CH. Gọi E là giao điểm của hai đường thẳng AD và BC. Chứng minh rằng:
a) BC vuoog CK
b) \(\frac{1}{CD^2}=\frac{1}{CE^2}+\frac{1}{CB^2}\)
Cho hình thang ABCD có đáy nhỏ AB ,ADvuông góc CDvà AD=CD.Vẽ đường cao BH.Trên tia đối của tiaDA lấy điểm K sao cho DK=CH .Gọi E là giao diểm của hai đường thẳng AD và BC.CMR
1,bc vuông góc ck
2,\(\dfrac{1}{CD^2}=\dfrac{1}{CE^2}+\dfrac{1}{CB^2}\)
cho hình vuông ABCD trên BC lấy điểm E tia AE cắt đường thẳng Cd tại G.trên nựa mặt phẳng b là đường thẳng AE chứa AD kẻ AK vuông góc với AE và AK=AE
a, C/M K,D,C thẳng hàng
b,C/M 1/AB bình=1 treenAE bình+1 trên AG bình
c,cho AD=13 AK/AG=10/13 tính KG
Cho hình thang ABCD vuông tại A và D có AB= 4 cm, CD= 9 cm, BC= 13 cm. Tính khoảng cách từ trung điểm M của AD đến BC
Cho hình thang cân ABCD (AB>CD,AB//CD).tiếp tuyến tại A,D của (O) cắt nhau ở E.I là giao điểm của AC và BD.đường thẳng EI cắt AD,BC ở R,S.
a) cm AEDI nt (câu này làm đc r)
b)cm AB//EI
c)cm:I là trung điểm RS
d)cm 1/AB+1/CD=2/RS