a) Xét tam giác \(ABC\):
\(M,N\)lần lượt là trung điểm của \(AB,AC\)nên \(MN\)là đường trung bình của tam giác \(ABC\)
suy ra \(MN=\frac{1}{2}BC,MN//BC\).
Xét tam giác \(DBC\):
\(P,Q\)lần lượt là trung điểm của \(DC,DB\)nên \(PQ\)là đường trung bình của tam giác \(DBC\)
suy ra \(PQ=\frac{1}{2}BC,PQ//BC\).
Suy ra \(PQ=MN,PQ//MN\)
nên \(MNPQ\)là hình bình hành.
b) - \(MNPQ\)là hình thoi.
\(MNPQ\)là hình thoi suy ra \(MN=NP\).
Tương tự ý a) ta cũng chứng minh được \(NP=\frac{1}{2}AD\)
do đó suy ra \(AD=BC\)nên \(ABCD\)là hình thang cân.
- \(MNPQ\)là hình chữ nhật.
\(MNPQ\)là hình chữ nhật suy ra \(MN\perp PQ\).
Chứng minh tương tự ý a) ta cũng có \(NP//AD\)
suy ra \(BC\perp AD\).
- \(MNPQ\)là hình vuông.
\(MNPQ\)là hình vuông khi vừa là hình thoi vừa là hình chữ nhật.