Câu 11. Cho hình bình hành ABCD. Một đường thẳng d đi qua A cắt đường chéo BD tại
P, cắt các đường thẳng BC và CD lần lượt tại M và N. Chứng minh rằng :
a) BM.DN không đổi ;
b) \(\frac{1}{AM}+\frac{1}{AN}=\frac{1}{AP}\)
Cho hình bình hành ABCD.Qua A vẽ một đường thẳng sao cho đường thẳng này cắt đường chéo BD ở P và cắt DC,BC lần lượt ở M,N a, Chứng minh AP/AM+AP/AN=1 b,có tồn tại hệ thức AP/AM+AP/AN=1 hay không khi đường thẳng vẽ qua A cắt các tia CD,CB,DB lần lượt tại M,N,P? vì sao?
cho hình binh hanh ABCD một đường thẳng d đi qua A cắt đường chéo BD tại P, cắt đường thẳng BC và CD lần lượt tại M và N.CMR
a) BM.DN không đổi
b) 1/AM+1/ AN=1/AP
Bài 1: Cho hình thang ABCD (AB//CD). AB cắt BD tại O, gọi M là trung điểm của AB, OM cắt CD tại N. Chứng minh rằng AM/CN = OB/OD; NC=ND
Bài 2: Cho hình bình hành ABCD, 1 đường thẳng d đi qua D cắt đường chéo AC ở I, cắt AB và BC lần lượt tại M, N. Chứng minh rằng:
a) IM/ID = ID/IN
b) MB/AB = NB/NC
cho hình bình hành ABCD đương thẳng d đi qua A cắt đường chéo BD tại P, cắt BC và CD lần lượt tại M và N. Cm
a/ BM.DN ko đổi
b/1/AM+1/AN=1/AP
Mọi người ơi giúp mik với
Bài 1: Cho hình thang ABCD ( AB // CD), đường chéo AC và BD cắt nhau tại O. Đường thẳng qua O và song song với AB cắt các cạnh bên AD, BC lần lượt tại M, N.
1. Chứng minh: OM = ON 2. Chứng minh: (AM/AD)+(CN/CB)=1
Cho hình thang ABCD ( AB // CD), đường chéo AC và BD cắt nhau tại O. Đường thẳng qua O và song song với AB cắt các cạnh bên AD, BC lần lượt tại M, N. 1. Chứng minh: OM = ON 2. Chứng minh: (AM/AD)+(CN/CB)=1
Các bạn ơi, giúp mình câu này với:
Cho hình bình hành ABCD, một đường thẳng d đi qua A cắt BD tại P, cắt các đường thẳng BC và CD tại M và N. Chứng minh:
a) \(BM.DN\)không đổi
b) \(\frac{1}{AM}+\frac{1}{AN}=\frac{1}{AP}\)
. Cho hình thang ABCD (AB // CD), AB = 1/2 CD. Gọi M, N lần lượt là trung điểm của AD và BC. Đoạn MN cắt BD tại P và cắt AC tại Q. Chứng minh MP = PQ = QN