Bài 1:
Vì AB=BC nên ∆ABC cân tại B suy ra ^BAC=^BCA (1)
mà AC là phân giác ^A nên ^BAC=^CAD (2)
Từ (1) và (2) suy ra ^BCA=^CAD, hai góc này ở vị trí so le trong nên BC//AD
Do đó tứ giác ABCD là hình thang.
Bài 2:
Lấy điểm E trên DC sao cho CE=AB suy ra CD-AB=DE (1)
suy ra tứ giác ABCE là hình bình hành nên BC=AE.
Xét ∆ADE có AD+AE=AD+BC > DE (2) Theo bất đẳng thức trong tam giác.
Từ (1) và (2) suy ra CD-AB <+BC.
Bài 3:
Kẻ BH vung góc với CD suy ra tứ giác ABHD là hình chữ nhật
nên ^ABH=90* (1)
Xét ∆BHC vuông tại H có HC=1/2 BC nên ^HBC=30* (2)
Từ (1) và (2) suy ra ^ABC=^ABH+^HBC=90*+30*=120*
Chúc thành công
Nguồn:LH
cách 2
bài 1:
xét tứ giác ABCD:
gócCAB = gócBCA( AB=BC)
mà gócCAB = gócCAD( AC là phân giác gócA)
=>gócBCA = gócCAD
mà 2 góc này ở vị trí so le trong
=>AC//BC =>tứ giác ABCD là hình thang
bài2
xét hình thang ABCD có
DC - AD < AC (bất đẳng thức trong tam giác)
AB + BC > AC(-------------------------------------...
=>DC - AD < AB + BC
=> DC-AB < AD+BC
bài 3:
kéo dài DA và CB cắt nhau tại K
AB là đường trung bình ( AB//DC và 2AB = DC)
=> B là trung điểm KC
=> DB là trung tuyến tam giácKDC vuông tại D
=> DB = BC = DC
=>tam giácDBC đều
Vậy gócKCD= 60độ
tổng 4 góc trong tứ giácABCD = 360độ
=>góc ABC = 120độ
k mk nha mấy chế
.
.
.
.
.
.
.
.
.
.
.
.
.