cho hình thang ABCD (AB//CD). Trên cạnh AD lấy hai điểm i vàK sao cho AI = IK =KD. Từ I và K kẻ các đường thẳng // vs 2 đáy cắt BC theo thứ tự tại F và H
a: cmr : BF=FH=HC
b: cho CD=8cm,IF=6CM TÍNH AB;HK
Cho hình thang abcd(ab song song vs CD ) trên cạnh ad lấy 2 điểm i và k sao cho ai bằng ik bằng kd từ i và k kẻ các đường thẳng song song với đáy bc theo thứ tự tại f và h cm bf bằng fh bằng hc
cho CD bằng 8 if bằng 6 tính ab và hk
Bài 6: Cho hình thang ABCD có hai đáy là AB và CD. Một đường thẳng song song với AB cắt các cạnh bên AD, BC theo thứ tự ở E và F.
a) Chứng minh ED/AD + BF/BC = 1
b) Các đường chéo của hình thang cắt nhau tại O. Chứng minh OA.OD = OB.OC.
Bài 7: Cho tam giác ABC nhọn, M là trung điểm của BC, E thuộc đoạn thẳng MC. Qua E kẻ đường thẳng song song với AC cắt AB ở D, cắt AM ở K. Qua E kẻ đường thẳng song song với AB cắt AC ở F.
a) Chứng minh CF = DK
b) Gọi H là trực tâm của tam giác ABC. Đường thẳng qua H vuông góc với MH cắt AB và AC theo thứ tự ở I và K’. Qua C kẻ đường thẳng song song với IK’, cắt AH và AB theo thứ tự ở N và P. Chứng minh NC = NP và HI = HK’.
Bài 8: Cho tam giác ABC, điểm M bất kì trên cạnh AB. Qua M kẻ đường thẳng song song với BC cắt AC ở N biết AM = 11 cm, MB = 8 cm, AC = 38 cm. Tính độ dài các đoạn thẳng AN, NC.
Bài 9: Cho góc xAy, trên tia Ax lấy hai điểm D và E, trên tia Ay lấy hai điểm F và G sao cho FD song song với EG. Đường thẳng qua G song song với FE cắt tia Ax tại H. Chứng minh AE 2 = AD.AH.
Bài 10: Cho hình bình hành ABCD. Gọi E là một điểm bất kì trên cạnh AB. Qua E kẻ đường thẳng song song với AC cắt BC ở F và kẻ đường thẳng song song với BD cắt AD ở H. Đường thẳng kẻ quá F song song với BD cắt CD ở G. Chứng minh AH.CD = AD.CG.
Cho hình thang ABCD, đáy AB. Từ đỉnh C, kẻ đường thẳng song song với AD, đường này cắt BD tại P và cắt AB tại E. Qua D, kẻ đường thẳng song song với BC, đường này cắt AC tại N và AB tại F. Đường thẳng qua E, song song với AC cắt BC tại Q và đường thẳng qua F song song với BD cắt AD tại M
a, Chứng minh bốn điểm M,N,P,Q nằm trên 1 đường thẳng song song với hai đáy
b, Chứng minh: MN = PQ
c, Cho AB=a, CD=b. Chứng minh rằng các điểm M, N,P, Q theo thứ tự chia các đoạn thẳng AD, AC, BD, DC theo cùng 1 tỉ số k. Tính k theo a và b.
Cho hình thang ABCD có hai đáy là AB và CD. Một đường thẳng song song với AB cắt các cạnh AD, BC theo thứ tự ở E và F. Chứng minh ED/AD + BF/BC
Cho hình thang ABCD (AB // CD). Hai đường chéo AC và BD cắt nhau tại O. Đường thẳng a qua O và song song với đáy của hình thang cắt các cạnh AD, BC theo thứ tự tại E và F (h.26).
Chứng minh rằng OE = OF
Cho hình thang cân ABCD (AB//CD; AB<CD). Qua A kẻ đường thẳng song song với BC cắt CD tại M.
a, Tứ giác ABCM hình gì? Vì sao?
b, Gọi I;H và K theo thứ tự là trung điểm của AM, AC và BC. Chứng minh H là trung điểm của IK
cho hình thang abcd i là giao điểm của 2 đường chéo ac và db . m là điểm trên đáy ab sao cho ma =2cm , mb=6cm. đáy cd=12cm mi cắt cd tại n
a) tính tỉ số nc/nd
b) tính nc, nd
c) qua i kẻ đường thẳng song song với 2 đáy, cắt cạnh bên ad, bc theo thứ tự e, f. cm 1/ie= 1/ab+1/cd
Bài 2: a, Cho hình thang ABCD (AB // CD). Một đường thẳng song song với hai đáy, cắt các cạnh bên AD và BC tại E, F. Tính FC biết AE = 4cm; ED = 2cm; BF = 6cm.
b, Cho hình thang ABCD (AB // CD), các đường chéo cắt nhau tại O.
Chứng minh rằng: OA.OD = OB. OC
giúp mik zới các pạn ơi, nhanh nha