Do hình thang AEFD và hình thang BCFE có cùng đường cao, suy ra S A E F D = S B C F E ⇔ D F = A B + D C 2 − A E
Cách dựng: Vẽ đường trung bình MN, trên đó lấy MK = AE. Từ K vẽ đường song song với BC cắt CD tại F cần tìm
Do hình thang AEFD và hình thang BCFE có cùng đường cao, suy ra S A E F D = S B C F E ⇔ D F = A B + D C 2 − A E
Cách dựng: Vẽ đường trung bình MN, trên đó lấy MK = AE. Từ K vẽ đường song song với BC cắt CD tại F cần tìm
cho hình thang cân ABCD (AB//CD) . Trên cạnh AB lấy trung điểm E , trên cạnh CD lấy trung điểm F
a)chứng minh tam giác AED=BEC
b)chứng minh EFvuong gốc CD
c) Gọi I là trung điểm của AD và BC . Chứng minh E,F,I thảng hàng
cho hình thang abcd. gọi m là trung điểm của ab, n là trung điểm của cd. lấy o bất kỳ trên mn, kẻ đường thẳng qua o // với 2 đáy ab và cd cắt ad tai e và cắt bc tại f. Chứng minh oe=of
Cho hình thang cân ABCD (AB//CD , AB <CD) , trên cạnh CD lấy E sao cho DE = AB , trên tia đối của tia AB lấy F sao cho AB =DC .Gọi H, K lần lượt là trung điểm của CE và AF .C/M
a, Các tứ giác ABED , BFDC là hình bình hành
b, Tứ giác BHKD là hình chữ nhật
cho hình vuông ABCD, có cạnh bằng a. Trên cạnh AB lấy điểm E, trên cạnh BC lấy điểm F, trên cạnh CD lấy điểm G, trên cạnh DA lấy điểm H sao cho AE=BF=CG=DH.
a. CMR: Tứ giác EFGH là hình vuông.
b. Với vị trí nào của E trên cạnh AB để diện tích tứ giác EFGH nhỏ nhất.
Cho hình thang ABCD (AB//CD). Gọi E và F lần lượt là trung điểm của AC và BD.
a/ CMR:EF//AB//CD, EF=1/2(CD-AB)
b/ Gọi M,N,P,Q lần lượt là giao điểm các đường phân giác trong và phân giác ngoài góc A,B,C,D. Chứng minh các điểm E, F, M, N, P, Q nằm trên đường trung bình của hình thang ABCD
c/ Tính độ dài các đoạn MN và PQ theo độ dài các cạnh hình thang ABCD
Cho hình thang cân ABCD (AB//CD và AB<CD)
a) Gọi các điểm M, N, P, Q lần lượt là trung điểm các cạnh AB, BC, CD, DA. Chứng minh rằng MNPQ là hình thoi.
b) Trên cạnh CD lấy điểm E sao cho CE = AB. Chứng minh rằng AC là phân giác góc BCD thì tứ giác ABCE là hình thoi.
Cho hình thang cân ABCD (AB//CD,AB<CD). Trên cạnh CD lấy điểm E sao cho BE = BC. Gọi I là trung điểm của BD. Chứng minh A, E đối xứng với nhau qua I.
Cho hình thang ABCD (AB//CD) và AB < CD. Xác định R, S lần lượt trên các cạnh AB, CD sao cho SARSD = 3SBCSR
Cho hình chữ nhật ABCD, độ dài các cạnh AB =48 . BC = 24.Gọi E là trung điểm CD. Hãy xác định trên AB điểm F sao cho S AFED =
13 / 24 S ABED