Cho hình thang ABCD (AB//CD). Trên các đoạn thẳng AC,BD lần lượt lấy M,N sao cho góc ANC=góc BMD. Chứng minh; tứ giác ABMN nội tiếpBạn nào giúp mk vs ^_^
Cho hình thang ABCD (AB//CD). Trên các đoạn thẳng AC,BD lần lượt lấy M,N sao cho góc ANC=góc BMD. Chứng minh; tứ giác ABMN nội tiếp Bạn nào giúp mk vs ^_^
Cho hình thang cân ABCD, (AB//CD; AB > CD). Hai đường chéo AC và BD cắt nhau tại I. Góc ACD = 600; gọi E; F; M lần lượt là trung điểm của các đoạn thẳng IA; ID; BC.
1. Chứng minh tứ giác BEFC nội tiếp được trong một đường tròn.
2. Chứng minh tam giác MEF là tam giác đều.
Cho hình thang cân ABCD (BC//AD), hai đường chéo AC, BD cắt nhau tại điểm O sao cho góc BOC = 60 độ. Gọi M,N,P,Q lần lượt là trung điểm của các đoạn thẳng BC,OA,AB,CD.
a) Chứng minh tứ giác DMNC nội tiếp được
b) Chứng minh tam giác MNQ là tam giác đều
c) So sánh các góc MQP, QND, NMC
d) Chứng minh trực tâm của tam giác MNQ thẳng hàng với O, I
Cho hình vuông ABCD cạnh a. Trên hai cạnh
AD và CD lần lượt lấy các điểm M và N sao cho góc MBN =45 độ . BM và BN cắt AC theo thứ tự ở E và F. Chứng minh các tứ giác BENC và BFMA nội tiếp
1 , Cho hình vuông ABCD có góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HD
a , Chứng minh rằng ABMN là hình bình hành .
b , Chứng minh rằng N là trực tâm của tam giác AMD
c , Chứng minh rằng góc BMD = 90 độ
d , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .
2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường chéo AC , BD cắt nhau tại O . Vẽ DE , DF lần lượt vuông góc với AB và BC . Chứng minh rằng tam giác EOF cân.
3 , Cho hình thang ABCD có góc A = 60 độ . Trên tia AD lấy M , trên tia Bc lấy N sao cho AM = DN
a , Chứng minh rằng tam giác ADM = tam giác DBN
b , Chứng minh rằng góc MBN = 60 độ
c , Chứng minh rằng tam giác BNM đều .
4 , Cho hình vuông ABCD , vẽ góc xAy = 90 độ . Ax cắt BC ở M , Ay cắt CD ở N
a , Chứng minh rằng tam giác MAN vuông cân
b , Vẽ hình bình hành AMFN có O là giao điểm 2 đường chéo . Chứng minh rằng OA = OC = \(\frac{1}{2}\) AF và tam giác ACF vuông tại C .
5 , Cho hình vuông ABCD . Trên BC lấy điểm E . Từ A kẻ vuông góc với AE cắtt CD tạ F . Gọi I là trung điểm của EF . M là giao điểm của AI và CD . Qua E kẻ đường thẳng song song với CD cắt AI tại N .
a , Chứng minh rằng MENF là hình thang
b , Chứng minh rằng chu vi tam giác CME không đổi khi E chuyển động trên BC .
Cho hình thang cân ABCD (BC//AD), hai đường chéo AC, BD cắt nhau tại điểm O sao cho \widehat{BOC} = 60 độ. Gọi M,N,P,Q lần lượt là trung điểm của các đoạn thẳng BC,OA,AB,CD.a) Chứng minh tứ giác DMNC nội tiếp đượcb) Chứng minh tam giác MNQ là tam giác đềuc) So sánh các góc \widehat{MQP}, \widehat{QND}, \widehat{NMC} d) Chứng minh trực tâm của tam giác MNQ thẳng hàng với O, I
Giải bài toán hình lớp 9 Cho hình thang ABCD (AB//CD) nội tiếp (O) . Các đường chéo AC,BD cắt nhau tại E , các cạnh bên AD,BC kéo dài cắt nhau tại F. a) Chứng minh tam giác OAC= tam giác OBD b) Chứng minh tứ giác ADOE và tứ giác AOFC nội tiếp c) Gọi M,N theo thứ tự là trung điểm của BD,AC và P là hình chiếu của B lên dường thẳng CD.Chứng minh tứ giác MNCP là hình bình hành d) Cho góc DOC=120 độ , góc AOB=90 độ , tính diện tích tứ giác ABCD theo R