Hình thang ABCD(AB//CD) có AB=a, BC=b, CD=c, AD=d. các tia phân giác góc A và D cắt nhau tại E. các tia phân giác góc B và góc C cắt nhau tại F. gọi M, N là trung điểm của AD, BC. a. Chứng minh tam giác AED vuông. b. Chứng minh rằng nếu E trùng với F thì a+b=c+d.
B1)Tứ giác ABCD có AD=BC, các tia DA và CB cắt nhau tại O. Gọi I, K theo thứ tự là trung điểm của AB, CD. Đường thẳng IK cắt các đường thẳng AD, BC theo thứ tự ở E,F. CMR; OEF là tam giác cân
B2) Hình thang ABCD (AB//CD) có AB=a, CD=b, BC= c, AD= d. Các tia phân giác của các góc A và D cắt nhau ở E. Các tia phân giác của các góc B và C cắt nhau ở F. Gọi M, N theo thứ tự là trung điểm của AD, BC.
a)CMR: 4 điểm M, E, F, N thẳng hàng
b) Tính các độ dài MN, MF, FN theo a,b,c,d
c) CMR: a+b= c+d thì E trùng với F
B3) Cho hình thang ABCD (AB//CD) có AB= AD+BC. CMR: các tia phân giác của góc C,D cắt nhau tại một điểm trên cạnh AB.
Cho hình thang ABCD (AB // CD) với AB = a, BC = b, CD = c, DA = d. Các tia
phân giác của góc A và góc D cắt nhau tại E, các tia phân giác của góc B và góc C cắt nhau
tại F. Gọi M, N theo thứ tự là trung điểm của AD và BC.
a) Chứng minh M, E, F, N thẳng hàng.
b) Tính độ dài MN, MF, FN theo a, b, c, d.
Bài 1; Cho hình thang ABCD (AD//BC), phân giác góc A cắt BC tại E
a) Chứng minh rằng AB=BE
b)Phân giác góc B cắt AE tại F. Chứng minh BF vuông góc AE và FA=FE
c) Gọi M là trung điểm của AB và N là trung điểm của CD. Chứng minh M,F,N thẳng hàng
Bài 2; Cho hình thang ABCD (AB//CD) có AB+BC=CD . Chúng minh tia phân giác góc A và góc B cắt nhau tại 1 điểm nằm trên đáy CD
Bài 3 Cho hình thang ABCD (AB//CD) , tia phân giác góc A và góc B cắt nhau tại 1 điểm nằm trên đáy CD . Chứng minh AD+BC=CD
Cho hình thang ABCD (AB//CD) với AB = a, BC = b, CD = c và DA = d. Các tia phân giác của góc A và góc D cắt nhau tại E, các tia phân giác của B ^ và C ^ cắt nhau tại F. Gọi M, N theo thứ tự là trung điểm của AD và BC.
a) Chứng minh M, E, N, F cùng nằm trên một đường thẳng.
b) Tính độ dài MN, MF, FN theo a, b, c, d.
Cho hình thang ABCD có AB//CD và AB < CD. Tia phân giác của các góc A
và D cắt nhau tại E, tia phân giác của các góc B và C cắt nhau tại F.
a) Tính số đo của: góc AED
b) Tính số đo của: góc BFC
c) Nếu AE và BF cắt nhau tại P nằm trên cạnh CD.
Chứng minh rằng: AD + BC = CD
d) Với P thuộc CD. Chứng minh rằng E, F nằm trên đường trung bình của hình
thang ABCD
Giai nhanh giúp e ạ
cho hình thang ABCD, đáy nhỏ AB. Phân giác góc A và góc D cắt nhau tại M, phân giác góc B và góc C cắt nhau tại N. Gọi E và F thứ tự là trung điểm của AD và BC. Chứng minh: a)M, E, F, N thẳng hàng b)2MN = (AB+DC) - (AD+BC)
Cho hình thang ABCD (AB//CD) với AB=a, BC=b, CD=c và DA=d. Các tia phân giác của góc A và góc D cắt nhau tại E, các tia phân giác của góc B và góc C cắt nhau tại F. Gọi M,N theo thứ tự là trung điểm của AD và BC
a) Chứng minh M,E,N,F cùng nằm trên một đường thẳng.
b) Tính độ dài MN,MF,FN thao a,b,c,d
Cho hình thang ABCD (AB//CD) và AB=a, BC=b, CD=c và DA=d. Các tia phân giác của góc A và góc D cắt nhau tại E, các tia phân giác của góc B và góc C cắt nhau tại F. Gọi M,N theo thứ tự là trung điểm của AD và BC
a) Chứng minh M,E,N,F cùng nằm trên một đường thẳng.
b) Tính độ dài MN,MF,FN thao a,b,c,d