cho hình thang abcd (ab // cd) có 2 đường chéo ac và bd cắt nhau tại o . chứng minh oa x od=oc x ob
Cho hình thang ABCD có AB//CD, hai đường chéo AC và BD cắt nhau tại O. Chứng ninh rằng OA×OD = OB×OC
Cho hình thang ABCD có AB // CD , hai đường chéo AC và BD cắt nhau tại O sao cho OA = OB; OC = OD . Tìm khẳng định sai trong các khẳng định sau?
A. ABCD là hình thang cân
B. AC = BD
C. BC = AD
D. Tam giác AOD cân tại O.
Cho ABCD là hình thang cân (AB // CD) có hai đường chéo cắt nhau tại O.
a. Chứng minh: OA = OB và OC = OD
b. Chứng minh: AC + BD > AB + CD
Cho hình thang ABCD (AB//CD). Hai đường chéo AC và BD cắt nhau tại O
a) Cm: Hai tam giác ABD=BAC
b) Cm: OA=OB và OC=OD
Cho hình thang ABCD(AB//CD); AC cắt BD tại O.Chứng minh OA=OB và OC=OD
Cho hình thang ABCD, AB//CD. 2 đường chéo cắt nhau tại O biết OA=1/3 OC, AB=4cm. Tính tỉ số OB/OD, tính CD
Bài 1: cho hình thang ABCD có (AB//CD), các đường chéo cắt nhau tại O. Chứng minh OA x OD = OB x OC.
Bài 2: cho tam giác DEF; M thuộc AE; N thuộc DF; sao cho MN//EF biết DM=9,5cm; ME=28cm; MN=8cm.
a) tính EF
Bài 3: cho hình thang ABCD (AB//CD). 2 đường chéo AC và BD theo thứ tự E và F. Chứng minh rằng Ox=Of
1) Cho tứ giác ABCD có AC cắt BD tại O . Biết OA = 3cm, OB = 4cm , AB =5cm , OC =2OA ; OD=2OB .
Khi đó CD bằng: A.) 5cm. B.) 10cm . C.) 15cm . D.) 20cm .
2) Cho tứ giác ABCD . Hai đường chéo AC và BD cắt nhau tại O . Gọi E là điểm trong của tam giác OCD . Số tứ giác (tứ giác lồi và tứ giác không lồi) nhận 4 trong 5 điểm A, B , .., D , E làm đỉnh là:
A) 3
B) 6
C) 9
D) 12