Cho hình nón tròn xoay có chiều cao h=20(cm), bán kính đáy r=25(cm). Một thiết diện đi qua đỉnh của hình nón có khoảng cách từ tâm của đáy đến mặt phẳng chứa thiết diện là 12(cm). Tính diện tích của thiết diện đó.
Cho khối nón tròn xoay có đường cao h = 20 cm, bán kính đáy r = 25 cm. Một mặt phẳng (P) chứa đỉnh S và giao tuyến với mặt phẳng đáy là AB. Khoảng cách từ tâm O của đáy đến mặt phẳng (P) là 12 cm. Khi đó diện tích thiết diện của (P) với khối nón bằng:
A. 500 c m 2
B. 475 c m 2
C. 450 c m 2
D. 550 c m 2
Cho hình nón tròn xoay có chiều cao h=20cm, bán kính đáy r=25cm. Một thiết diện đi qua đỉnh của hình nón có khoảng cách từ tâm của đáy đến mặt phẳng chứa thiết diện là 12cm. Tính diện tích của thiết diện đó.
Một hình nón có đường cao h = 20cm, bán kính đáy r = 25cm.
Một thiết diện đi qua đỉnh của hình nón và khoảng cách từ tâm của đáy đến mặt phẳng thiết diện là 12cm. Tính diện tích thiết diện đó
Một hình nón tròn xoay có bán kính bằng chiều cao và bằng 1. Gọi O là tâm của đường tròn đáy. Xét thiết diện qua đỉnh S hình nón là tam giác đều SAB. Tính khoảng cách từ O đến mặt phẳng (SAB)
Cho hình nón xoay có đường cao h = 4, bán kính đáy r = 3. Mặt phẳng (P) đi qua đỉnh của hình nón nhưng không qua trục của hình nón và cắt hình nón theo giao tuyến là một tam giác cân có độ dài cạnh đáy bằng 2. Tính diện tích S của thiết diện được tạo ra.
Cho khối nón (N) có chiều cao h=2cm, bán kính đáy r=25cm. Gọi α là mặt phẳng đi qua đỉnh của (N) và cách tâm của mặt đáy 12 cm. Khi đó α cắt (N) theo một thiết diện có diện tích là:
Cho hình nón đỉnh S, đáy là hình tròn tâm O và có chiều cao bằng 40. Cắt hình nón bằng một mặt phẳng song song với mặt phẳng đáy, thiết diện thu được là đường tròn tâm O'. Chiều cao h của khối nón đỉnh S đáy là hình tròn tâm O' bằng bao nhiêu, biết rằng thể tích của nó bằng 1 8 thể tích khối nón đỉnh S, đáy là hình tròn tâm O.
Cho khối cầu (S) có tâm I và bán kính R= 2 3 , gọi (P) là mặt phẳng cắt khối cầu (S) theo thiết diện là hình tròn (C) . Tính khoảng cách d từ I đến (P) sao cho khối nón có đỉnh I và đáy là hình tròn (C) có thể tích lớn nhất.