Đáp án là A
+ Tính
+ Tính A'H:
Ta có: ( Vì AH là hình chiếu của AA' trên mp(ABCD)).
Suy ra:
Vậy:
Đáp án là A
+ Tính
+ Tính A'H:
Ta có: ( Vì AH là hình chiếu của AA' trên mp(ABCD)).
Suy ra:
Vậy:
Cho hình lăng trụ ABCD.A'B'C'D' có hình chiếu A' lên mp(ABCD) là trung điểm AB, ABCD là hình thoi cạnh 2a, góc A B C ^ = 60 O ,BB' tạo với đáy một góc 30 o . Tính thể tích hình lăng trụ ABCD.A'B'C'D'
A. a 3 3
B. 2 a 3 3
C. 2 a 3
D. a 3
Cho lăng trụ đứng ABCD.A'B'C'D có đáy ABCD là hình thang, AB = AD = a, CD = 2a. Đường thẳng A’C tạo với mặt phẳng (ABCD) một góc bằng 60o. Biết hình lăng trụ nội tiếp một hình trụ. Tính thể tích khối trụ ngoại tiếp lăng trụ theo a ta được:
A. 3 πa 3
B. πa 3
C. 4 πa 3 3
D. πa 3 3
Cho hình lăng trụ ABCD.A'B'C'D' có đáy ABCD là hình thoi cạnh a, tâm O và A B C ⏜ = 120 0 Các cạnh AA, A'B, A'D cùng tạo với mặt đáy một góc bằng 60 0 . Tính theo a thể tích V của khối lăng trụ đã cho.
Cho lăng trụ ABCD.A'B'C'D' có ABCD là hình thoi. Hình chiếu của A’ lên (ABCD) là trọng tâm của tam giác ABD. Tính thể tích khối lăng trụ ABC.A'B'C' biết AB = a, A B C ^ = 120 ° , AA' = a.
Cho hình lăng trụ ABCD.A'B'C'D' có đáy là hình vuông cạnh a, cạnh bên AA'=2a, góc tạo bởi cạnh bên và mặt đáy bằng 60 ° . Thể tích của khối lăng trụ là
Lăng trụ đứng ABCD.A'B'C'D' có đáy ABCD là hình vuông cạnh a và đường chéo BD' của lăng trụ hợp với đáy ABCD một góc 30º. Thể tích của lăng trụ là:
A . a 3 6 3
B . a 3 6 8
C . a 3 3
D . 3 a 3 6
Cho lăng trụ đứng ABCD.A'B'C'D' có đáy ABCD là hình vuông cạnh a. Mặt phẳng (C'BD) hợp với đáy góc 45 ∘ . Tính thể tích lăng trụ
Cho lăng trụ ABCD.A'B'C'D' có đáy ABCD là hình chữ nhật với A B = a , A D = a 3 . Hình chiếu vuông góc của A' lên (ABCD) trùng với giao điểm của AC và BD. Tính khoảng cách từ điểm B' đến mặt phẳng (A'BD)
A. a 3
B. a 2
C. a 3 2
D. a 3 6
Cho hình lăng trụ ABC.A’B’C’ có đáy là tam giác vuông tại B, A B = a , B C = 2 a . Hình chiếu vuông góc của A’ trên đáy ABC là trung điểm H của cạnh AC, đường thẳng A’B tạo với đáy một góc 45 0 . Tính thể tích V của khối lăng trụ ABC.A’B’C’