Cho hình hộp ABCD.A’B’C’D’ có đáy ABCD là hình thoi cạnh a, BCD ^ = 120° và AA' = 7a/2. Hình chiếu vuông góc của A’ lên mặt phẳng (ABCD) trùng với giao điểm của AC và BD. Tính theo a thể tích khối hộp ABCD.A’B’C’D’.
A. V = 12 a 3
B. V = 3 a 3
C. V = 9 a 3
D. V = 6 a 3
Cho hình hộp ABCD.A’B’C’D’ có đáy ABCD là hình thoi cạnh a 3 , BD=3a. Hình chiếu vuông góc của B trên mặt phẳng (A'B'C'D') trùng với trung điểm A’C’. Gọi α là góc giữa 2 mặt phẳng (ABCD) và (CDD'C'). Thể tích của khối hộp ABCD.A'B'C'D' bằng
Cho hình hộp đứng ABCD.A’B’C’D’ có đáy là hình vuông cạnh a, AC’ tạo với mặt bên (BCC’B’) một góc 30 ° . Tính thể tích của khối hộp ABCD.A’B’C’D’ bằng
Cho hình hộp ABCD.A’B’C’D’ có đáy ABCD là hình thoi tâm O, cạnh bằng a, B'D'=a 3 . Góc giữa CC’ và mặt đáy là 60 0 , trung điểm H của AO là hình chiếu vuông góc của A’ lên mặt phẳng ABCD. Tính thể tích của hình hộp
Một hình hộp chữ nhật ABCD.A'B'C'D' có đáy là hình thoi cạnh a, góc B A D ⏜ = 60 ∘ , cạnh bên hợp với đáy góc 45 ∘ sao cho A’ chiếu xuống mặt phẳng (ABCD) trùng với giao điểm O của hai đường chéo mặt đáy. Tính thể tích hình hộp.
Khối hộp đứng có diện tích xung quanh bằng 12a^2 , đáy ABCD là hình thoi có chu vi bằng 8a và góc BAD= ° 60 . Chiều cao và thể tích khối hộp lần lượt là
Lăng trụ đứng ABCD.A’B’C’D’ có đáy ABCD là hình vuông cạnh a và đường chéo BD’ của lăng trụ hợp với đáy ABCD một góc 30º. Thể tích của lăng trụ là:
A. a 3 6 3
B. a 3 6 8
C. a 3 3
D. 3 a 3 6
Khối hộp đứng có diện tích xung quanh bằng 12a2 , đáy abcd là hình thoi có chu vi bằng 8a và góc BAD =600 . Tính chiều cao và thể tích khối chóp
Cho hình hộp ABCD.A'B'C'D' có đáy ABCD là hình thoi cạnh a, B C D ^ = 120 ∘ và AA' = 7 a 2 Hình chiếu vuông góc của A' lên mặt phẳng (ABCD) trùng với giao điểm của AC và BD.Tính theo a thể tích khối hộp ABCD.A'B'C'D'