Cho hình chữ nhật MNPQ (MN>NP); MH vuông với QN tại H.
a) C/m tam giác MNH đồng dạng với tam giác NQP
b) C/m MN2 = QN.NH
c) Lấy E, F lần lượt là trung điểm của NH,MH. Chứng minh tam giác MNE và tam giác QMF đồng dạng
d) MH cắt PQ tại I. Tính diện tích tam giác MNI, cho QI = \(\frac{1}{2}\)IP và diện tích QHI = 3cm2
Cho hình chữ Nhật MNPQ có MN=8cm, NP=6cm. Gọi H là chân đường cao kẻ từ M xuống QN. PE là đường phân giác của góc P
1) chứng minh Tam giác MHN đồng dạng với Tam giác NPQ
2) chứng minh MH.EQ=HN.EN
3) tính diện tích tứ giác MEPH
Cho tam giác MNP vuông tại M, đường cao MH. Gọi D,E lần lượt là chân các đường vuông góc hạ từ H xuống MN và MP.
a) Chứng minh tứ giác MDHE là hình chữ nhật.
b) Gọi A là trung điểm của HP, chứng minh tam giác DEA vuông.
c) Cho MP = 4cm, MN = 3cm. Tính diện tích tam giác DEA.
Cho hình chữ nhật MNPQ (MN > PN) Kẻ MH vuông góc với ưQN . Gọi E, F là các trung điểm của NH, MH
MH cắt PQ ở I. Tính S tam giác MNI biết 2QI=IP. S tam giác QHI là 3 cm2
cho hình vuông MNPQ có MP cắt NQ tại I,MN=10cm.Một góc vuông mIn có Im cắt PQ tại k,In cắt NP tại h.tính diện tích tứ giác IHPK
Cho tam giác MND vuông tại M, MN = 3cm, MD = 4cm. Vẽ đường cao MH ( H thuộc ND) và tia phân giác của góc M cắt ND tại E
a) Cm: tam giác HNM đồng dạng tam giác MND
b) Tính độ dài cạnh ND, MH, NH
c) Tính tỷ số diện tích của 2 tam giác MNE và MDE
mik đang rất cần gấp, mn giúp mik nhanh vs ạ
Cho hình chữ nhật MNPQ có MN = 4cm ; NP = 3cm
Vẽ đường cao MH của tam giác MNQ
a, Chứng minh : tam giác MHN đồng dạng với tam giác NQP
b, Chứng minh : MQ2 = QH . QN
c, Tính độ dài đoạn thẳng QH , MH
cho hình chữa nhật mnpq mn=12 nq=9 gọi h la chân đg vuông góc kẻ từ m đến qn, tia pg qmn cắt cn tại e a)Tính tỉ số (S tam giác MEQ/S tam giác MEN )b)mhn đồng dạng qmn c)mh^2 =qh.hn