Cho hình chữ nhật ABCD và số thực k>0.Tập hợp các điểm M thỏa mãn đẳng thức :
\(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}\right|=k\)
Câu 1: Cho 3 điểm A, B, C không thẳng hàng và điểm M thỏa mãn đẳng thức vecto \(\overrightarrow{MA}\)=x\(\overrightarrow{MB}\)+y\(\overrightarrow{MC}\)
Tính giá trị biểu thức P=x+y
A. P=0
B. P=2
C. P=-2
D. P=3
Câu 2: Cho hình chữ nhật ABCD và số thực k>0. Tập hợp các điểm M thỏa mãn đẳng thức \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}\right|\)=k là
A. một đoạn thẳng
B. một đường thẳng
C. một đường tròn
D. một điểm
Cho tam giác ABC
a. Gọi điểm M thỏa hệ thức vecto MA + vecto MB - vecto MC = vecto BC. Chứng minh M cố định
b. Chứng minh có duy nhất điểm N thỏa mãn 2 vectoNA - vecto NB + vecto NC = vecto CA
Câu 1: cho hình chữ nhật ABCD và I là giao điểm của 2 đường chéo. Tập hợp các điểm M thỏa mãn \(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|\overrightarrow{MC}+\overrightarrow{MD}\right|\) là
A. trung trực của đoạn thẳng AB
B. trung trực của đoạn thẳng AD
C. đường tròn tâm I, bán kính \(\dfrac{AC}{2}\)
D. đường tròn tâm I, bán kính \(\dfrac{AB+BC}{2}\)
Câu 2: cho 2 điểm A, B phân biệt và cố định, với I là trung điểm của AB. Tập hợp các điểm M thỏa mãn đẳng thức \(\left|2\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|\overrightarrow{MA}+2\overrightarrow{MB}\right|\) là
A. đường trung trực của đoạn thẳng AB
B. đường tròn đường kính AB
C. đường trung trực đoạn thẳng IA
D. đường tròn tâm A, bán kính AB
Cho hình bình hành ABCD .Tập hợp tất cả các điểm M thỏa mãn :\(\overrightarrow{MA}+\overrightarrow{MB}-\overrightarrow{MC}=\overrightarrow{MD}\)
Cho hình chữ nhật ABCD, \(AB=a;AC=2a\)
a, Tìm tập hợp điểm M sao cho \(|\overrightarrow{MA}+\overrightarrow{MB}-\overrightarrow{MC}|=|\overrightarrow{MD}|\)
b, Tìm vị trí điểm M để \(P=|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{2MC}|\) đạt GTNN
Cho tam giác ABC .Tập hợp các điểm M thỏa mãn ;\(\left|\overrightarrow{MB}-\overrightarrow{MC}\right|=\left|\overrightarrow{BM}-\overrightarrow{BA}\right|\)
cho tam giác đều ABC và điểm O thỏa mãn OA+4OB+2OC=0 tính số đo góc AOC
Cho hình bình hành ABCD tâm O , hai điểm M,N di động thỏa mãn hệ thức \(MN^{\rightarrow}=MA^{\rightarrow}+MB^{\rightarrow}+MC^{\rightarrow}+MD^{\rightarrow}\). CM : MN luôn đi qua một điểm cố định