cho hình chữ nhật ABCD có AB= 8 cm , AD= 6cm .trên cạnh AB,CD lần lượt lấy các điểm M,N sao cho AM=CN=3 cm
a,tính diện tích hình chữ nhật ABCD
b, tứ giác AMCN là hình gì? chứng minh. tính diện tích tứ giác AMCN.
c.giả sử AM=CN = x cm. tìm vị trí của điểm M,N trên AB,CD sao cho diện tích tứ giác AMCN bằng 1/4 diện tích của hình chữ nhật ABCD
1. Cho hình bình hành ABCD có AB= 2AD. Gọi M, N theo tứ tự là trung điểm của các cạnh AB, CD. Gọi P và Q lần lượt là giao điểm của BN với CM và của AN với DM
a. Tứ giác AMND là hình gì? Vì sao?
b. Chứng minh: tứ giác MPNQ là hình chữ nhật
c. Tìm điều kiện của tứ giác ABCD để MPNQ là hình vuông
d. Chứng minh: bốn đường thẳng AC, BD, MN, QP đồng qui
2. Cho hình bình hành ABCD. Kẻ AN, CM vuông góc với BD, N và M thuộc BD
a. Chứng minh DN = BM
b. Chứng minh Tứ giác ANCM là hình bình hành
c. Gọi K là điểm đối xứng với A qua N. Tứ giác DKCB là hình gì? Vì sao?
d. Tia AM cắt tia KC tại P. Chứng minh các đường thẳng AC, PN, KM đồng qui
b1: cho tam giác nhọn ABC. Gọi D,E,F lần lượt là trung điểm của AC,AB,BC
a) tứ giác BCDE là hình gì? vì sao?
b) tứ giác BEDF là hình gì? vì sao?
c) gọi H là trực tâm của tam giác ABC. M,N,P lần lượt là trung điểm của BH,CH,AH. cmr: tứ giác DEMN là hình chữ nhật
d) gọi O là giao điểm của MD và EN. cmr 3 điểm O,P,F thẳng hàng
b2: cho tam giác ABC cân tại A. đường trung tuyến AI. E là trung điểm của AC, M là điểm đối xứng với I qua E.
a) cmr tứ giác AMCI là hình chữ nhật
b) AI cắt BM tại O. cmr OE // IC
b3: cho tam giác ABC vuông tại A, có góc B bằng 60 độ, AB = 3cm, AM là trung tuyến của tam giác.
a) Tính độ dài cạnh BC và số đo góc MAC
b) trung trực của cạnh BC cắt AB tại E và cắt AC tại F. chứng minh B với E đối xứng qua AC và FC = 2FA
c) gọi I là trung điểm của đoạn FC. K là trung điểm của đoạn FE. chứng minh tứ giác AMIK là hình chữ nhật và tính diện tích hình chữ nhật AMIK.
d) P là trung điểm của FI, Q là trung điểm của FK. cmr 3 đường thẳng AQ,BF,MP đồng quy
Cho tam giác vuông abc vuông tại a biết ab = 6cm ac = 8cm bc gọi M;N lần lượt à trung điểm của BC và AB.Gọi P là trung điểm đối xứng với M qua AB
a. Tính diện tích của tam giác ABC
b.Chứng minh rằng MN vuông góc với AB
c. Tứ giác AMBP là hình gì ? Vì sao ?
Cho hình thang ABCD vuông tại A có cạnh bên AD bắng đáy nhỏ AB và bắng nữa đáy lớn DC. Gọi H là hình chiếu của D trên AC. Lấy M và N lần lượt là trung điểm của HC và HD.
a)c/m tứ giác DNMC là hình thang
b)c/m tứ giác ANMB là hình bình hành
c) tính số đo góc BMD.
Cho hình thoi ABCD cạnh a, góc A=60°. Gọi E ,F lần lượt là trung điểm của các cạnh AD và CD
1, tính s tam giác BEF
2, gọi M là hình chiếu của E trên AC. I và K lần lượt là giao điểm của AC và EF với BD. Tính tỉ số MC trên EF
Cho hình thang ABCD (AB//CD) biết AB=AD=6cm, AC=8cm và AD vuông góc với AC. a) Tính diện tích hình thang ABCD. b) Gọi M là trung điểm của BC, AM cắt CD tại I. Tính diện tích tam giác MCI.
Cho hình bình hành ABCD có AD=2AB, góc A=60°.Gọi E,F lần lượt là trung điểm của BC và AD.
a) Chứng minh AE vuông góc với BF
b) Chứng minh tứ giác BFDC là hình thang cân
c) Lấy M đối xứng của A qua B. Chứng minh tứ giác BMCD là hình chữ nhật. Suy ra M, E, Đ thẳng hàng
cho hình chữ nhật ABCD có : M , N , P , Q lần lượt là trung điểm của các cạnh AB , BC , CD , AD . cho biết AB = 4cm .
a) tính diện tích tứ giác MNPQ
b) nếu AB = AD thì tứ giác MNPQ sẽ là hình gì ?