cho hình chữ nhật ABCD (AB > BC ) .Qua B vẽ đường thẳng vuông góc BD cắt AD, CD tại E và F.
a) Chứng minh: DA.DE=DC.DF
b) Chứng minh AC^#=EF.AE.CF
Cho hình thang ABCD (AB//CD). Gọi E, F là trung điểm của BD và AC
a) Chứng minh rằng EF//CD.
b) Đường thẳng qua E vuông góc với AD cắt đường thẳng qua F vuông góc với BC tại G. Chứng minh rằng điểm G nằm trên đường trung trực của đoạn thẳng CD.
Cho tứ giác ABCD nội tiếp đường tròn (O) sao cho điểm O nằm trong tứ giác ABCD và AB<CD. AC cắt BD tại E.
a) Chứng minh EA.EC=EB.ED
b) Gọi K trung điểm BC. Đường thẳng qua E và vuông góc OE cắt AD và BC lần lượt tại M,N. Chứng minh tứ giác ENKO nội tiếp
c) Chứng minh E trung điểm MN
d) Qua D kẻ đường vuông góc với AD. Đường thẳng này cắt đường thẳng vuông góc BC tại C ở F. Chứng minh E,O,F thẳng hàng
Câu 5. Cho tam giác ABC vuông tại C (AC < BC), đường cao CH và đường phân giác trong BD (H ∈ AB, De AC). Qua D kẻ đường thẳng vuông góc với AC cắt CH, AB lần lượt tại E và F.
a) Chứng minh bốn điểm C, D, H, F cùng thuộc một đường tròn.
b) Chứng minh AD.AC = DE.AB.
Cho hình thang ABCD(AB//CD, AB<CD). Gọi K, M lần lượt là trung điểm của BD, AC. Đường thẳng qua K và vuông góc với AD cắt đường thẳng qua M và vuông góc với BC tại Q. Chứng minh:
a) KM//AB
b) QD=QC
Cho hình chữ nhật ABCD (AB>BC). Kẻ AH vuông góc BD tại H. AH cắt DC tại K và cắt đường thẳng BC tại M A) Chứng minh DH.DB=AH.AK và BC.BD=AH.AM B} Chứng minh AD bình = DK.DC C) Chứng minh AH bình=HK.HM
Cho hình chữ nhật ABCD (AB>BC) .Lấy điểm E trên AD ,lấy điểm F,K trên CD sao cho DF=CK (F nằm giữa D và K ) .Vẽ đường thẳng vuông góc với EK tại K cắt BC tại M . Chứng minh : góc EAM =90*
Bài 5. Cho hình chữ nhật ABCD, qua A kẻ đường vuông góc với BD tại H. Biết AB = 20 cm , AH = 12 cm a) Tính AD, HD, HB .b) AH cắt CD tại M. Chứng minh: DH.DB=AH.AM C) AH cắt BC tại K. Chứng minh; HA^ 2 =HM.HK
cho hình bình hành ABCD ( AB // CD) gọi M, N,P lân lượt là trung điểm của AB , BD , MN cắt CD tại Q đường thẳng qua NI AD và đường thẳng D vuông góc BC cắt nhau tại E , chứng minh:
a MN=NQ
b. EC = ED