Cho hình chóp S.ABCD có đáy ABCD là một tứ giác lồi. Gọi O là giao điểm của hai đường chéo AC và BD . Xác định thiết diện của hình chóp cắt bởi mặt phẳng (α) đi qua O, song song với AB và SC. Thiết diện đó là hình gì?
Cho hình chóp S.ABCD có đáy ABCD là tứ giác lồi, O là giao điểm của hai đường chéo AC và BD. Thiết diện của hình chóp khi cắt bởi mặt phẳng qua O, song song với AB và SC là hình gì?
A. Hình vuông
B. Hình bình hành
C. Hình chữ nhật
D. Hình thang
Cho hình chóp S.ABCD có đáy là tứ giác ABCD. Gọi G 1 và G 2 lần lượt là trọng tâm của các tam giác SBC và SCD
Tìm giao tuyến của mặt phẳng ( A G 1 G 2 ) với các mặt phẳng (ABCD) và (SCD).
Xác định thiết diện của hình chóp với mặt phẳng ( A G 1 G 2 ) .
Cho hình chóp SABCD có đáy ABCD là tứ giác lồi. Gọi M, N là trung điểm SB, SD. Trên dường chéo AC ta lấy điểm K tùy ý. Tìm thiết diện của hình chóp cắt bởi (KMN).
Cho hình chóp S.ABCD có đáy ABCD là tứ giác lồi .gọi M là điểm thuộc miền trong tam giác SCD .tìm giao tuyến của 2 mặt phẳng a) (SBC) và (SAD) b) (AMC) và (SAD) c) (SAM) và (ABCD) d) (SBM) và (SAC)
Cho hình chóp S.ABCD, có đáy là hình vuông cạnh a và tam giác ABC đều. Một điểm M thuộc cạnh BC sao cho BM= x ( 0< x< a), mặt phẳng (α) đi qua M song song với SA và SB. Biết rằng mp (α) cắt hình chóp theo 1 tứ giác. Tính diện tích thiết diện theo a và x
A. 3 4 a 2 - x 2
B. 3 2 a 2 - x 2
C. 2 4 a 2 - x 2
D. 1 4 a 2 - x 2
Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình thang vuông tại A và B với AB=BC=a ,AD=2a Cạnh SA=2a và SA vuông góc với mặt phẳng (ABCD). Gọi M là trung điểm của cạnh AB và ( α ) là mặt phẳng qua M và vuông góc với AB. Diện tích thiết diện của mặt phẳng ( α ) với hình chóp S.ABCD là
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với mặt đáy một góc 60 o . Mặt phẳng (P) chứa AB và đi qua trọng tâm G của tam giác SAC cắt SC, SD lần lượt tại M và N. Thể tích khối chóp S.ABMN là
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với mặt đáy một góc 60 o . Mặt phẳng (P) chứa AB và đi qua trọng tâm G của tam giác SAC cắt SC, SD lần lượt tại M và N. Thể tích khối chóp S.ABMN là