Đáp án A
Dễ thấy trung điểm I của SC là tâm hình cầu ngoại tiếp chóp S.AICD.
Vậy thể tích hình cầu ngoại tiếp chop S.AICD là:
Đáp án A
Dễ thấy trung điểm I của SC là tâm hình cầu ngoại tiếp chóp S.AICD.
Vậy thể tích hình cầu ngoại tiếp chop S.AICD là:
Cho hình chóp S.ABC đáy ABC là tam giác vuông tại C, có cạnh AB a = , cạnh bên SA vuông góc mặt phẳng đáy và SA a = 3 . Tính thể tích V khối cầu ngoại tiếp hình chóp.
A. V= 2 2 3 3 a .
B. V= 3 4a .
C. V= 32 3 3 πa .
D. V= 4 3 3 πa .
Cho hình chóp S.ABCD đáy là hình thang cân có AB=CD=BC=a, AD=2a. Cạnh bên SA vuông góc với mặt đáy, SA=2a. Tính thể tích khối cầu ngoại tiếp hình chóp S.BCD.
Trong không gian, cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B với AB = BC = 1, AD = 2, cạnh bên SA =1 và SA vuông góc với đáy. Gọi E là trung điểm của AD. Tính diện tích S m c của mặt cầu ngoại tiếp hình chóp S.CDE.
Bài 1: cho hình chóp S.ABCD có đáy ABCD là hình thang , BAD=ABC= 90 độ. Cạnh AB=BC=a, AD=2a, SA vuông góc ( ABCD ), Sa=2a. Gọi M,N lần lượt là trung điểm của SA và SD. Tính theo a thể tích khối chóp S.BCNM
Bài 2: cho hình chóp tứ giác đều S.ABCD có AB = a; SA = a\(\sqrt{2}\) . Gọi M,N lần lượt là trung điểm của SA,SB,SD. Tính theo a thể tích của khối tứ diện A.MNP
Trong không gian cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B với AB=BC=1, AD=2, cạnh bên SA=1 và SA vuông góc với đáy. Gọi E là trung điểm AD. Tính diện tích S m c của mặt cầu ngoại tiếp hình chóp S.CDE.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, SA ⊥ (ABCD) và SA = a. Gọi E là trung điểm của cạnh AB. Diện tích mặt cầu ngoại tiếp hình chóp bằng .SBCE
A. 14 πa 2
B. 11 πa 2
C. 8 πa 2
D. 12 πa 2
Hình chóp S.ABCD có SA = a là chiều cao của hình chóp và đáy ABCD là hình thang vuông tại A và B có AB = BC = a và AD = 2a. Gọi E là trung điểm của cạnh AD. Xác định tâm và bán kính mặt cầu ngoại tiếp hình chóp S.CDE
Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và D với AD = 2a, AB = 2DC = 2a, SA ⊥ (ABCD) và cạnh SB tạo với đáy một góc 600. Thể tích khối chóp S.ABCD bằng
A. 2 a 3 3 3
B. a 3 3
C. 2 a 3 3
D. a 3
Cho hình chóp S.ABCD có SA vuông góc với mặt phẳng (ABCD), tứ giác ABCD là hình thang vuông với cạnh đáy AD, BC. AD=3CB=3a, AB=a, SA=a 3 . Điểm I thỏa mãn A D → = 3 A I → , M là trung điểm SD, H là giao điểm của AM và SI. Gọi E, F lần lượt là hình chiếu của A lên SB, SC. Tính thể tích V của khối nón có đáy là đường tròn ngoại tiếp tam giác EFH và đỉnh thuộc mặt phẳng (ABCD)