Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với mặt phẳng (ABCD) và SA=a 6 . Gọi a là góc giữa đường thẳng SB và mặt phẳng (SAC). Tính sin α ta được kết quả là:
A. 1 14
B. 2 2
C. 3 2
D. 1 5
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a , BC = a 3 , SA = a và SA vuông góc với đáy ABCD. Tính sin α với α là góc tạo bởi giữa đường thẳng BD và mặt phẳng




Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm I, cạnh a, góc B A D ⏜ = 60 0 , SA=SB=SB= a 3 2 . Gọi α là góc giữa đường thẳng SD và mặt phẳng (SBC). Giá trị sin α bằng
A. 1 3
B. 2 3
C. 5 3
D. 2 2 3
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, A B = a , B C = a 3 , S A = a và SA vuông góc với đáy ABCD. Tính sin α với α là góc tạo bởi đường thẳng BD và mặt phẳng (SBC)




#SGD Bắc Giang – năm 2017 – 2018~Cho hình chóp S. ABCD có đáy ABCD là hình chữ nhật, AB=a, BC = a 3 , SA=a và SA vuông góc với đáy ABCD. Tính sin α, với α là góc tạo bởi giữa đường thẳng BD và mặt phẳng (SBC).
![]()
![]()
![]()
![]()
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Hai mặt phẳng (SAB) và (SAC) cùng vuông góc với đáy (ABCD) và SA=2 α Tính cosin của góc giữa đường thẳng SB và mặt phẳng (SAD)



![]()
Cho hình chóp S.ABCD, đáy ABCD là hình vuông cạnh a, cạnh SA=a và vuông góc với mặt đáy. Gọi M, N lần lượt là trung điểm các cạnh BC, SD, α là góc giữa đường thẳng MN và (SAC). Giá trị tan α là
A. 6 3
B. 6 2
C. 3 2
D. 2 3
Cho hình chóp S.ABCD, đáy ABCD là hình vuông cạnh a, cạnh SA=a và vuông góc với mặt đáy. Gọi M, N lần lượt là trung điểm các cạnh BC, SD, α là góc giữa đường thẳng MN và (SAC). Giá trị tan α là
A. 6 3
B. 6 2
C. 3 2
D. 2 3
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB=a, AD=2a, SA=2a và SA ⊥ (ABCD), Gọi a là góc giữa 2 đường thẳng SC và BD. Khi đó, cos α bằng

![]()

