Cho hình chóp S.ABCD có đáy ABCD là hình vuông, cạnh bên SA vuông góc với đáy. Biết rằng khoảng cách từ điểm A đến mặt phẳng (SBC) bằng a. Xét góc α thay đổi là số đo của góc giữa đường thẳng SB và mặt phẳng đáy. Tính sao cho thể tích của hình chóp S.ABCD đạt giá trị nhỏ nhất.
Cho hình chóp S.ABCD có đáy là hình vuông cạnh bằng a 2 , tam giác SAD cân tại S, mặt bên (SAD) vuông góc với mặt phẳng đáy. Biết thể tích S.ABCD bằng 4 a 3 /3. Tính khoảng cách h từ B đến mặt phẳng (SCD).
A. h = 2 3 a
B. h = 4 3 a
C. h = 8 3 a
D. h = 3 4 a
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, đáy nhỏ của hình thang là CD, cạnh bên SC=a 15 . Tam giác SAD là tam giác đều cạnh bằng 2a và nằm trong mặt phẳng vuông góc với đáy. Gọi H là trung điểm AD, khoảng cách từ B đến mặt phẳng (SHC) bằng 2a 6 . Tính thể tích V của khối chóp S.ABCD?
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a,
SA=a 3 và vuông góc với mặt phẳng đáy. Tính khoảng cách
từ A đến mặt phẳng (SBC).
Cho hình chóp S . A B C D có đáy A B C D là hình vuông cạnh a , cạnh bên S A vuông góc với mặt phẳng đáy, góc giữa mặt phẳng S B C và mặt phẳng đáy bằng 60 0 . Khoảng cách từ D đến mặt phẳng S B C bằng
A. a 6 4
B. a 2
C. a 3 2
D. a 15 3
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a; SA ⊥ ( A B C D ) và SA=2a.Tính khoảng cách d từ điểm B đến mặt phẳng (SCD).
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a; S A ⊥ A B C D và SA=2a. Tính khoảng cách d từ điểm B đến mặt phẳng (SCD)
A. d = a 5 5 .
B. d = a
C. d = 4 a 5 5 .
D. d = 2 a 5 5 .
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại C và D, A B C ^ = 30 0 . Biết A C = a , C D = a 2 , S A = a 3 2 và cạnh SA vuông góc với mặt phẳng đáy. Khoảng cách từ B đến mặt phẳng (SCD) bằng:
Cho khối chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với đáy và khoảng cách từ điểm A đến mặt phẳng (SBC) bằng a 2 2 . Thể tích của khối chóp S.ABCD là: