Hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = 1 và AD = 3 . Cạnh bên SA vuông góc với mặt phẳng đáy và SC tạo với mặt phẳng (ABCD) một góc 60 0 . Tính thể tích V của khối chóp S,ABCD
A. V = 3
B. V = 2
C. V = 6
D. V = 1
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy, cạnh bên SC tạo với mặt phẳng (SAB) một góc 30 0 . Thể tích của khối chóp đó bằng:
A . a 3 3 3
B . a 3 2 4
C . a 3 2 2
D . a 3 2 3
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB=a, BC=a 3 Cạnh bên SA =a và vuông góc với đáy (ABCD) Cosin của góc tạo bởi giữa đường thẳng BD và mặt phẳng (SBC) bằng
A. 3 2
B. 14 4
C. 3 5
D. 22 5
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có AB = a, BC = 3a. Hai mặt phẳng (SAB) và mặt phẳng (SAD) cùng vuông góc với mặt phẳng đáy, cạnh SC hợp với mặt đáy một góc 30o. Tính thể khối chóp S.ABCD theo a.
Cho hình chóp S.ABCD có đáy là hình chữ nhật có cạnh AB = 2a, AD = a. Hai mặt bên SAB và SAD cùng vuông góc với đáy. S C = a 14 Tính theo a thể tích khối chóp S.ABCD
A. V = 6 a 3
B. V = 3 a 3
C. V = 2 a 3
D. V = a 3
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = 2a. Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Đường thẳng SC tạo với đáy một góc Khi đó, thể tích của khối chóp S.ABCD bằng
A . a 3 17 3
B . a 3 17 3
C . a 3 17 9
D . a 3 17 6
Cho hình chóp S.ABCD có đáy là hình vuông cạnh bằng a, hai mặt phẳng (SAB), (SAD) cùng vuông góc với đáy, SC tạo với đáy góc 60 0 . Tính thể tích khối chóp S.ABCD theo a.
A . a 3 2 3
B . a 3 6 3
C . 2 a 3 6 3
D . 4 a 3 6 3
Cho khối chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với đáy và SC tạo với mặt phẳng (SAD) một góc 30⁰. Tính thể tích V của khối chóp đã cho.
A. V = a 3 2 3 .
B. V = a 3 6 3 .
C. V = 2 a 3 .
D. V = 2 a 3 3 .
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a và SA ⊥ (ABCD).
a) Chứng minh BD ⊥ SC.
b) Chứng minh (SAB) ⊥ (SBC).
c) Cho SA = (a√6)/3. Tính góc giữa SC và mặt phẳng (ABCD).