Cho hình chóp S.ABCD có đáy là hình vuông, cạnh bên SA vuông góc với đáy. Gọi M,N là trung điểm của SA,SB. Mặt phẳng MNCD chia hình chóp đã cho thành hai phần. Tỉ số thể tích hai phần S.MNCD và MNABCD là
A. 3 4
B. 3 5
C. 4 5
D. 1.
Cho hình chóp tứ giá đều S.ABCD có cạnh đáy bằng a, cạnh bên hợp với đáy một góc 60 0 . Gọi M là điểm đối xứng của C qua D, N là trung điểm SC. Mặt phẳng (BMN) chia khối chóp S.ABCD thành hai phần. Tỉ số thể tích giữa hai phần (phần lớn trên phần bé) bằng:
Cho khối chóp S.ABCD trong đó ABCD là hình thang có các cạnh đáy AB, CD sao cho CD = 4AB Một mặt phẳng qua CD cắt SA, SB tại các điểm tương ứng M, N. Nếu điểm M nằm trên SA sao cho thiết diện MNCD chia khối chóp đã cho thành hai phần có thể tích V S . M N C D : V M N C D A tỉ lệ 1:2. Khi đó tỉ số S M S A bằng
A. - 3 + 132 2
B. - 6 + 51 3
C. - 3 + 17 2
D. - 3 + 21 2
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi K,M lần lượt là trung điểm của các đoạn thẳng SA, SB, α là mặt phẳng qua K song song với AC và AM. Mặt phẳng α chia khối chóp S.ABCD thành hai khối đa diện. Gọi V1 là thể tích của khối đa diện chứa đỉnh S và V2 là thể tích khối đa diện còn lại. Tính tỉ số V 1 V 2 .
Cho khối chóp S.ABCD có đáy ABCD là hình bình hành và có thể tích bằng 1. Gọi M, N lần lượt là các điểm trên các cạnh SB, SD sao cho MS = MB, ND = NS = 2. Mặt phẳng (CMN) chia khối chóp đã cho thành hai phần, thể tích của phần có thể tích nhỏ hơn bằng
cho hình chóp SABCD đáy là hình bình hành. A' thuộc SA sao cho SA'/SA=3/4. Mặt phẳng P đi qua A và song song với (ABCD) cắt SB,SC,SD lần lượt tại B',C',D'. Mặt phẳng (P) chia hình chóp thành 2 phần bằng nhau. Tính tỷ số thể tích 2 phần đó
Cho hình chóp S.ABCD, đáy ABCD là hình bình hành, mặt phẳng α đi qua AB cắt cạnh SC, SD lần lượt tại M, N. Tính tỉ số S N S D để α chia khối chóp S.ABCD thành hai phần có thể tích bằng nhau.
A. 1 2
B. 1 3
C. 5 - 1 2
D. 3 - 1 2
Hình chóp S.ABCD có đáy ABCD là hình bình hành. Trên các đoạn SD, SA lấy các điểm M, N và S M S D = S M S A = 2 3 , mặt phẳng (BCMN) chia hình chóp S.ABCD thành hai phần có thể tích V 1 , V 2 ( V 1 là thể tích SBCMN). Tính V 1 V 2 .
A. V 1 V 2 = 5 4
B. V 1 V 2 = 4 5
C. V 1 V 2 = 3 2
D. V 1 V 2 = 2 3
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, M là trung điểm của AD. Gọi S ' là giao điểm của SC với mặt phẳng chứa BM và song song với SA. Tính tỉ số thể tích của hai khối chóp S'.BCDM và S.ABCD.
A. 2 3
B. 1 2
C. 1 4
D. 3 4