Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với mặt đáy, S A = 2 a . Thể tích khối chóp S.ABCD theo a là:
Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy, SA = 2a . Tính theo a thể tích khối chóp S.ABCD.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy. Biết thể tích của khối chóp S.ABCD theo a là V = . Góc α giữa đường thẳng SD và mặt phẳng (SAB) là bao nhiêu độ ?
Cho hình chóp S.ABCD có đáy ABCD là hình vuông có cạnh bằng a. Cạnh SA vuông góc với mặt phẳng đáy (ABCD), SA=a 3 . Góc tạo với mặt phẳng (SAB) và (SCD) bằng
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt phẳng (ABCD) và S A = a . Thể tích khối chóp S.ABCD bằng
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, mặt bên SAB nằm trong mặt phẳng vuông góc với (ABCD), S A B ^ = 30°, SA = 2a. Tính thể tích V của khối chóp S.ABCD.
A. a 3 3 6
B. a 3 3
C. a 3 9
D. a 3
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy và S A = a 2 . Thể tích của khối chóp S.ABCD là
A. a 3 2 6
B. a 3 2
C. a 3 2 4
D. a 3 2 3
Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và D. SA vuông góc với mặt phẳng đáy (ABCD); AB = 2a, AC = CD=a. Mặt phẳng (P) đi qua CD và trọng tâm G của tam giác SAB cắt các cạnh SA, SB lần lượt tại M và N. Tính thể tích khối chóp S.CDMN theo thể tích khối chóp S.ABCD
A. V S . C D M N = 14 27 V S . A B C D
B. V S . C D M N = 4 27 V S . A B C D
C. V S . C D M N = 10 27 V S . A B C D
D. V S . C D M N = V S . A B C D 2
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. Biết BC = a 3 . Cạnh bên SA vuông góc với mặt phẳng (ABCD) và SA = a. Góc giữa SD với mặt phẳng (SAB) là:
A. 30o
B. 45o
C. 60o
D. 90o