Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Biết thể tích cho hình chóp S.ABCD là a 3 15 6 Góc giữa đường thẳng SC và mặt phẳng đáy (ABCD) là
A. 30 0
B. 45 0
C. 60 0
D. 120 0
Cho khối chóp S.ABCD có ABCD là hình vuông có cạnh đáy bằng 3a. Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Tính thể tích khối chóp biết tam giác SAB vuông.
A . 9 a 3
B . 9 a 3 3 2
C . 9 a 3 2
D . 9 a 3 3
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = 2a. Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Đường thẳng SC tạo với đáy một góc Khi đó, thể tích của khối chóp S.ABCD bằng
A . a 3 17 3
B . a 3 17 3
C . a 3 17 9
D . a 3 17 6
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Thể tích khối chóp S.ABCD là:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh bên SA vuông góc với mặt phẳng đáy, khối chóp S.ABCD có thể tích bằng a 3 2 3 . Gọi α là góc giữa hai mặt phẳng (SAD) và (SBD). Tính cos α.
A. cos α = 3 5
B. cos α = 6 3
C. cos α = 2 2 5
D. cos α = 10 5
Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh bên SA vuông góc với mặt phẳng đáy và có độ dài là a. Thể tích của tứ diện S.BCD bằng
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, đáy nhỏ của hình thang là CD, cạnh bên SC= a 15 Tam giác SAD là tam giác đều cạnh bằng 2a và nằm trong mặt phẳng vuông góc với đáy. Gọi H là trung điểm AD, khoảng cách từ B đến mặt phẳng (SHC) bằng 2 a 6 Tính thể tích V của khối chóp S.ABCD?
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB đều và nằm trong mặt phẳng vuông gócvới đáy. Tính thể tích V của khối chóp S.ABCD
A. V = a 3 3 12
B. V = a 3 3 6
C. V = a 3 3 4
D. V = a 3 3 9
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy, cạnh bên SC tạo với mặt phẳng (SAB) một góc 30 0 . Thể tích của khối chóp đó bằng:
A . a 3 3 3
B . a 3 2 4
C . a 3 2 2
D . a 3 2 3