Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với A B = a , A D = a 2 . Gọi H là trung điểm của cạnh AB. Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Góc giữa hai mặt phẳng (SAC) và (ABCD) là 60 ° . Tính khoảng cách giữa hai đường thẳng CH và SD
A. 2 a 5 5
B. 2 a 10 5
C. a 5 5
D. 2 a 2 5
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a , A B C ^ = 60 0 . Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt đáy. Gọi M và N lần lượt là trung điểm của các cạnh AB, CD. Khoảng cách giữa hai đường thẳng CM và SN bằng
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, mặt bên SAB là tam giác vuông cân tại S và nằm trong mặt phẳng vuông góc vói đáy. Gọi M là trung điểm của SC và α là số đo của góc giữa hai đường thẳng AC, BM. Khi đó cos α bằng
Cho hình chóp SABCD có đáy ABCD là hình thoi cạnh bằng a, góc DAB bằng 60 độ, tam giác SAB đều và nằm trên mặt phẳng vuông góc với mặt đáy, gọi M, N là trung điểm của AB, CD tính cosin của góc giữa 2 đường thẳng AN và SD
Cho hình chóp S.ABCD có đáy ABCD là hình vuông, cạnh bên SA vuông góc với mặt phẳng đáy. Đường thẳng SD tạo với mặt phẳng (SAB) một góc 45°. Gọi I là trung điểm của cạnh CD. Góc giữa hai đường thẳng BI và SD bằng (Số đo góc được làm tròn đến hàng đơn vị).
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Gọi G là trọng tâm của tam giác SAB và M, N là trung điểm của SC, SD. Tính cosin của góc giữa hai mặt phẳng (GMN) và (ABCD).
A. 2 39 39
B. 3 6
C. 2 39 13
D. 13 13
Cho hình chóp S.ABCD có đáy hình chữ nhật, AB=a; AD=2a. Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng 45 0 . Gọi M là trung điểm của SD. Tính theo a khoảng cách d từ điểm M đến mặt phẳng (SAC)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Gọi G là trọng tâm của tam giác SAB và M, N lần lượt là trung điểm của SC, SD (tham khảo hình vẽ bên). Tính côsin của góc giữa hai mặt phẳng (GMN) và (ABCD)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB là tam giác cân tại S và nằm trong mặt phẳng vuông góc với đáy, góc giữa đường thẳng SC và mặt phẳng đáy bằng 45 o . Thể tích khối chóp S.ABCD bằng:
A. a 3 3 12
B. a 3 3 9
C. a 3 5 24
D. a 3 5 6