Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a với SA = a 2 , SB = a 3 2 , B A D ^ = 60 ∘ và mặt phẳng (SAB) vuông góc với mặt phẳng đáy. Gọi H, K lần lượt là trung điểm của AB, BC. Thể tích tứ diện K.SDC có giá trị là:
Cho hình chóp S.ABCD có SA vuông góc với mặt phẳng (ABCD), tứ giác ABCD là hình thang vuông với cạnh đáy AD, BC. AD=3CB=3a, AB=a, SA=a 3 . Điểm I thỏa mãn A D → = 3 A I → , M là trung điểm SD, H là giao điểm của AM và SI. Gọi E, F lần lượt là hình chiếu của A lên SB, SC. Tính thể tích V của khối nón có đáy là đường tròn ngoại tiếp tam giác EFH và đỉnh thuộc mặt phẳng (ABCD)
Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và D. SA vuông góc với mặt phẳng đáy (ABCD); AB = 2a, AC = CD=a. Mặt phẳng (P) đi qua CD và trọng tâm G của tam giác SAB cắt các cạnh SA, SB lần lượt tại M và N. Tính thể tích khối chóp S.CDMN theo thể tích khối chóp S.ABCD
A. V S . C D M N = 14 27 V S . A B C D
B. V S . C D M N = 4 27 V S . A B C D
C. V S . C D M N = 10 27 V S . A B C D
D. V S . C D M N = V S . A B C D 2
Cho hình chóp S.ABCD có đáy là hình vuông, gọi M là trung điểm của AB. Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Biết SD = a 3 , SC tạo với mặt phẳng đáy (ABCD) một góc 60°. Thể tích khối chóp S.ABCD theo a là
A. 4 a 3 3
B. 3 a 3 10
C. 4 a 3 15 5
D. 2 a 3 15 3
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB = a, BC = 2a, cạnh bên SA vuông góc với mặt đáy, SA = a. Gọi H là hình chiếu của a trên SB, tính thể tích khối chóp H.ABCD theo a và côsin của góc giữa 2 mặt phẳng (SBC) và (SCD)
Cho hình chóp S.ABCD có đáy là hình vuông cạnh 2 2 , cạnh bên SA vuông góc với mặt phẳng đáy và SA=3. Mặt phẳng α qua A và vuông góc với SC cắt cạnh SB, SC, SD lần lượt tại các điểm M, N, P. Thể tích V của khối cầu ngoại tiếp tứ diện CMNP
Cho hình chóp S.ABCD có đáy là hình vuông cạnh 2 2 cạnh bên SA vuông góc với mặt phẳng đáy và SA=3. Mặt phẳng α qua A và vuông góc với SC cắt cạnh SB, SC, SD lần lượt tại các điểm M, N, P. Thể tích V của khối cầu ngoại tiếp tứ diện CMNP
A. V = 125 π 6
B. V = 32 π 3
C. V = 108 π 3
D. V = 64 2 π 3
Cho hình chóp S. ABCD có đáy ABCD là hình chữ nhật với AB = a, BC = a 3 . Cạnh bên SA vuông góc với đáy và đường thẳng SC tạo với mặt phẳng (SAB) một góc 30 độ. Tính thể tích V của khối chóp S.ABCD theo a.
A. V = 2 6 a 3 3
B. V = 2 a 3 3
C. V = 3 a 3
D. V = 3 a 3 3
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB đều và nằm trong một mặt phẳng vuông góc với đáy. Gọi H, K lần lượt là trung điểm của các cạnh AB và AD. Tính sin của góc tạo bởi giữa đường thẳng SA và mặt phẳng (SHK)