Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Azaki

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm O, AB = a, BC = a√3 và SA vuông góc (ABCD). Góc giữa SC và mặt phẳng (ABCD) bằng 45°. Gọi M là trung điểm của đoạn OA. Chứng minh (SAC) vuông góc (SBM)

Nguyễn Việt Lâm
11 tháng 3 2022 lúc 19:12

\(AC=\sqrt{AB^2+BC^2}=2a\) \(\Rightarrow AO=\dfrac{1}{2}AC=a\) ; \(AM=\dfrac{1}{2}AO=\dfrac{a}{2}\)

\(SA\perp\left(ABCD\right)\Rightarrow AC\) là hình chiếu vuông góc của SC lên (ABCD)

\(\Rightarrow\widehat{SCA}\) là góc giữa SC và (ABCD) \(\Rightarrow\widehat{SCA}=45^0\)

\(\Rightarrow SA=AC.tan45^0=2a\)

\(AB^2=a^2\) ; \(AM.AC=\dfrac{a}{2}.2a=a^2\Rightarrow AB^2=AM.AC\)

\(\Rightarrow\dfrac{AB}{AM}=\dfrac{AC}{AB}\Rightarrow\Delta ABM\sim\Delta ACB\left(c.g.c\right)\)

\(\Rightarrow\widehat{AMB}=\widehat{ABC}=90^0\Rightarrow BM\perp AC\)

Lại có \(SA\perp\left(ABCD\right)\Rightarrow SA\perp BM\)

\(\Rightarrow BM\perp\left(SAC\right)\Rightarrow\left(SBM\right)\perp\left(SAC\right)\)

Nguyễn Việt Lâm
11 tháng 3 2022 lúc 19:12

undefined


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Trần Nguyễn Quỳnh Như
Xem chi tiết
Hoàng Ánh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết