Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trịnh Hồng Châu

cho hình chóp SABCD có ABCD là hình thang vuông tại A và B với AB = BC = a , AD = 2a ; SA ⊥ ( ABCD ) và SA = 2a . Gọi M là 1 điểm nằm trên AB ; (α) là mặt phẳng qua M , vuông góc với AB . Đặt x=AM ( 0< x < α ) .

a, Tìm thiết diện của hình chóp với (α) . Thiết diện là hình gì ?

b, Tính diện tích thiết diện theo a và x 

dạ giúp mình bài này với ạ , mình cảm ơn ạ 

Đức Huy
1 tháng 2 2022 lúc 15:30

Gọi N, Q lần lượt là trung điểm của AB , CD \(\Rightarrow\left\{{}\begin{matrix}MN\perp AB\\MQ\perp AB\end{matrix}\right.\)

Qua N kẻ đường thẳng song song với BC , cắt SC tại P

suy ra thiết diện của mặt phẳng (\(\alpha\) ) và hình chóp là MNPQ

Vì MQ là đường t/b của hình thang ABCD , \(\Rightarrow MQ=\dfrac{3a}{2}\)

MN là đường t/b của tam giác SAB; \(MN=\dfrac{SA}{2}=a\)

NP là đường t/b của tam giác SBC ; \(\Rightarrow NP=\dfrac{BC}{2}=\dfrac{a}{2}\)

Vậy diện tích hình thang MNPQ là : \(S_{MNPQ}=\dfrac{MN.\left(NP+MQ\right)}{2}=\dfrac{a}{2}.\left(\dfrac{a}{2}+\dfrac{3a}{2}\right)=a^2\)


Các câu hỏi tương tự
Nguyễn Phúc
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Trần Mai Hân
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết