Đáp án là D
Ta có
Theo giả thiết
Từ (1) và (2) suy ra
Đáp án là D
Ta có
Theo giả thiết
Từ (1) và (2) suy ra
Cho khối chóp S.ABC, trên ba cạnh SA, SB, SC lần lượt lấy ba điểm A', B', C' sao cho SA' = 1 2 SA; SB' = 1 3 SB; SC' = 1 4 SC. Gọi V và V' lần lượt là thể tích của khối chóp S.ABC và S.A'B'C'. Khi đó tỉ số V ' V là:
A. 12
B. 1 12
C. 24
D 1 24
Cho hình chóp S.ABC với SA⊥SB, SB⊥SC, SC⊥SA, SA=SB=SC=a. Gọi B′,C′ lần lượt là hình chiếu vuông góc của S trên AB,AC. Thể tích của hình chóp S.AB′C′ là
Cho hình chóp S.ABC biết rằng SA, SB, SC vuông góc với nhau từng đôi một. Trên cạnh SA, SB, SC lần lượt lấy 3 điểm A', B', C' sao cho \(\Delta A'B'C'\) và \(\Delta ABC\) là hai tam giác đồng dạng. Hỏi có thể suy ra được mp(A'B'C') // mp(ABC) hay không?
Cho khối chóp S.ABC có SA = SB = SC = a và A S B ^ = B S C ^ = C S A ^ = 30 0 . Mặt phẳng ( α ) qua A và cắt hai cạnh SB, SC tại B', C' sao cho chu vi tam giác AB'C' nhỏ nhất. Tính k = V S . A B ' C ' V S . A B C .
Cho khối chóp S.ABC có các điểm A', B', C' lần lượt thuộc các cạnh SA, SB, SC thỏa 3SA' = SA, 4SB' = SB, 5SC' = 3SC. Biết thể tích khối chóp S.A'B'C' bằng 5 ( c m 3 ). Tìm thể tích khối chóp S.ABC
A. 120 ( c m 3 )
B. 60 ( c m 3 )
C. 80 ( c m 3 )
D. 100 ( c m 3 )
Cho hình chóp S.ABC, trên cạnh SB, SC, SD lần lượt lấy ba điểm A’, B’, C’sao cho SA = 2SA’; SB = 3SB’và SC = 4SC’. Gọi V lần lượt là thể tích của khối chóp S.A’B’C’và S.ABC. Khi đó tỉ số V ' V bằng bao nhiêu?
A. 12
B. 24.
Cho hình chóp S.ABCD có đáy là hình thoi ABCD và có cạnh SA vuông góc với mặt phẳng (ABCD). Gọi I và K là hai điểm lần lượt lấy trên hai cạnh SB và SD sao cho SI/SB = SK/SD . Chứng minh:
a) BD ⊥ SC
b) IK ⊥mp(SAC)
cho hình chóp S.ABCD có đáy hình vuông cạnh a, SA = a, SA ⊥ (ABCD). Gọi H, K lần lượt là trung điểm của cạnh SB,SD; O là tâm hình vuông ABCD.
1/ Chứng minh: (SAB) ⊥ (SBC)
2/ Chứng minh: SC ⊥ (AHK)
Cho hình chóp S.ABCD, các điểm A’, B’, C’ lần lượt thuộc các cạnh SA, SB, SC. Phát biểu nào sau đây là đúng?
A. Thiết diện của (A’B’C’) với hình chóp S.ABCD là tam giác A’B’C’
B. Thiết diện của (A’B’C’) với hình chóp S.ABCD là tứ giác A’B’C’D’ với D’ là giao điểm của B’I với SD, trong đó I là giao điểm của A’C’ với SO, O là giao điểm của AC và BD
C. Thiết diện của (A’B’C’) với hình chóp S.ABCD là tứ giác SA’B’C’
D. Thiết diện của (A’B’C’) với hình chóp S.ABCD là tứ giác A’B’C’D