Cho hình chóp S.ABC có SA, SB, SC tạo với mặt đáy các góc bằng nhau và bằng 60 ⁰ . Biết BC=a, B A C ^ = 45 ° . Tính khoảng cách h từ đỉnh S đến mặt phẳng (ABC)
A. h = a 6
B. h = a 6 2
C. h = a 6 3
D. h = a 6
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại đỉnh B với AC =2a, BC =a. Đỉnh S cách đều các điểm A, B, C. Biết góc giữa đường thẳng SB và mặt phẳng (ABC) bằng 60 o Khoảng cách từ trung điểm M của SC đến mặt phẳng (SAB) bằng
A. a 39 13
B. 3 a 13 13
C. a 39 26
D. a 13 26
Cho hình chóp S.ABC có ABC là tam giác đều cạnh a. Hai mặt phẳng (SAC), (SAB) cùng vuông góc với đáy và góc tạo bởi SC và đáy bằng 600. Tính khoảng cách h từ A tới mặt phẳng (SBC) theo a
Cho hình chóp S.ABC có SA vuông góc với mặt phẳng (ABC) và đáy ABC là tam giác vuông tại B, AB=a, SA=a Gọi H là hình chiếu của A trên SB . Khoảng cách giữa AH và BC bằng:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, AB = a, SA = SB = SC. Góc giữa đường thẳng SA và mặt phẳng (ABC) bằng 45 0 . Tính khoảng cách từ điểm S đến mặt phẳng (ABC)
A . a 3 3
B . a 2 2
C . a 2
D . a 3
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, AB = a, SA = SB = SC. Góc giữa đường thẳng SA và mặt phẳng (ABC) bằng 45 0 . Tính khoảng cách từ điểm S đến mặt phẳng (ABC)
A. a 3 3
B. a 2 2
C. a 2
D. a 3
Cho hình chóp S.ABC có SA vuông góc với mặt phẳng (ABC) và đáy là tam giác vuông tại B, AB=SA=a. Gọi H là hình chiếu của A trên SB. Khoảng cách giữa AH và BC bằng:
A. a 2 2
B. a
C. a 2
D. a 3 2
Cho hình chóp S.ABC có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của S trên mặt phẳng (ABC) là điểm H thuộc cạnh AB sao cho HA = 3HB. Góc giữa đường thẳng SC và mặt phẳng bằng 60°. Tính khoảng cách giữa hai đường thẳng SA và BC theo a.
A . a 61 4
B . 4 a 17 3
C . a 35 51
D . 4 a 351 3 61
Cho hình chóp S.ABC có đáy là tam giác vuông tại B, AB = a, BC = a 3 , biết SA = a và vuông góc với mặt phẳng đáy. Một mặt phẳng ( α ) đi qua A , vuông góc với SC tại H , cắt SB tại K . Tính thể tích khối chóp S.AHK theo a
A . a 3 3 30
B . 5 a 3 3 60
C . a 3 3 60
D . a 3 3 10