Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, A B C ^ = 30 0 . SBC là tam giác đều cạnh a và mặt bên SBC vuông góc với đáy. Khoảng cách từ điểm C đến mặt phẳng (SAB) là:
Cho hình chóp S.ABC có đáy là tam giác ABC vuông tại A góc A B C ⏜ = 30 0 ; tam giác SBC là tam giác đều cạnh a và măt phẳng (SAB) ⊥ mặt phẳng (ABC). Khoảng cách từ A đến mặt phẳng (SBC) là:
Cho hình chóp S . A B C có đáy A B C là tam giác đều cạnh bằng 1. Biết khoảng cách từ A đến mặt phẳng S B C là 6 4 , từ B đến mặt phẳng S A C là 15 10 ; từ C đến mặt phẳng S A B là 30 20 và hình chiếu vuông góc của S xuống đáy nằm trong tam giác A B C . Thể tích khối chóp S . A B C bằng
A. 1 36
B. 1 48
C. 1 12
D. 1 24
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a; mặt bên SAB nằm trong mặt phẳng vuông góc với mặt phẳng đáy và tam giác SAB vuông cân tại S. Tính thể tích V của khối chóp S.ABC.
A. V = a 3 3 12
B. V = a 3 3 24
C. V = a 3 3 6
D. V = a 3 3 8
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, A B = 1 , B C = 3 , mặt bên SAC là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Khoảng cách từ điểm C đến mặt phẳng (SAB) bằng
Cho hình chóp S.ABC có đáy là tam giác ABC đều cạnh a, tam giác SBA vuông tại B, tam giác SAC vuông tại C. Biết góc giữa hai mặt phẳng (SAB) và (ABC) bằng 600. Tính khoảng cách từ điểm C đến mặt phẳng (SAB)
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, mặt bên SBC là tam giác đều cạnh a và mặt phẳng (SBC) vuông góc với mặt đáy. Tính theo a khoảng cách giữa hai đường thẳng SA và BC.
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, mặt bên SBC là tam giác đều cạnh a và mặt phẳng (SBC) vuông góc với mặt đáy. Tính theo a khoảng cách giữa hai đường thẳng SA và BC.
A. a 22 11
B. a 4 3
C. a 11 22
D. a 3 4
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A , A B = 1 , A C = 3 . Tam giác SBC đều và nằm trong mặt phắng vuông với đáy. Tính khoảng cách từ B đến mặt phẳng (SAC)
A. 39 13
B. 1
C. 2 39 13
D. 3 2