Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh bằng 1, mặt bên SAB là tam giác cân tại S và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính thể tích V của khối cầu ngoại tiếp hình chóp đã cho biết A S B ^ = 120 0
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh bằng 1, mặt bên SAB là tam giác cân tại S và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính thể tích V của khối cầu ngoại tiếp hình chóp đã cho biết A S B ^ = 120 0
A. V = 5 15 π 54
B. V = 4 3 π 27
C. V = 5 π 3
D. V = 13 78 π 27
Cho hình chóp đều S.ABC có cạnh đáy bằng a, cạnh bên hợp với mặt đáy một góc 60 o Gọi (S ) là mặt cầu ngoại tiếp hình chóp S.ABC. Thể tích của khối cầu tạo nên bởi mặt cầu (S ) bằng
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B với AB =a, BC = a 3 .Cạnh SA vuông góc với mặt phẳng đáy và S A = 2 a 3 Tính bán kính R của mặt cầu ngoại tiếp hình chóp S.ABC
A. R = a
B. R = 3a
C. R = 4a
D. R = 2a
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại C ; SA vuông góc với đáy; SC = a. Gọi α là góc giữa hai mặt phẳng (SBC) và (ABC). Tính để thể tích khối chóp S.ABC lớn nhất
Cho hình chóp S.ABC có đáy là tam giác ABC đều cạnh 3a,cạnh bên SC = 2a và SC vuông góc với mặt phẳng đáy. Tính bán kính R của mặt cầu ngoại tiếp hình chóp S.ABC
A. R = 2 a 3
B. R = 3 a
C. R = a 13 2
D. R = 2 a
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân, AB = AC= a; mặt bên SAB là tam giác vuông cân tại S và nằm trong mặt phẳng vuông góc với đáy. Tính theo a thể tích của khối chóp S.ABC
A. 1 12 a 3
B. 3 4 a 3
C. 3 12 a 3
D. 1 4 a 3
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, cạnh bên SA vuông góc với đáy, đường thẳng SC tạo với mặt phẳng đáy một góc 60 0 . Thể tích của khối chóp S.ABC bằng:
Cho hình chóp S.ABC có đáy ABC là tam giác đều có cạnh là a. Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc vơi đáy. Tính thể tích của khối cầu ngoại tiếp hình chóp.
A . 15 πa 3 9
B . 5 15 πa 3 54
C . 5 15 πa 3 18
D . 4 3 πa 3 27