Đáp án B
Gọi H là chân đường vuông góc hạ từ đỉnh S lên mặt phẳng (ABC), khi đó ta chứng minh được H là trung điểm của BC. Gọi M là trung điểm của AB khi đó từ giả thiết ta có:
Đặt AB = x ta tính được:
Đáp án B
Gọi H là chân đường vuông góc hạ từ đỉnh S lên mặt phẳng (ABC), khi đó ta chứng minh được H là trung điểm của BC. Gọi M là trung điểm của AB khi đó từ giả thiết ta có:
Đặt AB = x ta tính được:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, mặt bên (SAB) là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABC), gọi M là điểm thuộc cạnh SC sao cho MC = 2MS. Biết AB = 3, BC = 3 3 . Tính thể tích của khối chóp S.ABC
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABC), gọi M là điểm thuộc cạnh SC sao cho MC = 2MS. Biết AB = 3, BC = 3 3 . Tính thể tích của khối chóp
Cho hình chóp S.ABC có đáy là tam giác ABC vuông cân ở B, A C = a 2 . SA vuông góc với mặt phẳng (ABC) và SA=a. Gọi G là trọng tâm của tam giác SBC. Một mặt phẳng đi qua hai điểm A, G và song song với BC cắt SB, SC lần lượt tại B' và C'. Thể tích khối chóp S.A'B'C' bằng:
Cho hình chóp S.ABC có đáy là tam giác ABC vuông tại C, AB=2a,AC=a và SA vuông góc với mặt phẳng (ABC). Biết góc giữa hai mặt phẳng (SAB) và (SBC) bằng 60°. Tính thể tích khối chóp S.ABC.
Cho hình chóp S.ABC có tam giác ABC vuông cân tại B, AB = a. Gọi I là trung điểm của AC. Hình chiếu vuông góc của S lên mặt phẳng (ABC) là điểm H thỏa mãn B I → = 3 I H → . Góc giữa hai mặt phẳng (SAB) và (SBC) là 60 độ. Thể tích của khối chóp S.ABC là:
A. V = a3/9
B.V = a3/6
C.V = a3/18
D.V = a3/3
Cho hình chóp S.ABCD có đáy là hình vuông, gọi M là trung điểm của AB. Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Biết SD=a 3 SC tạo với mặt phẳng đáy (ABCD) một góc 60 o Thể tích khối chóp S.ABCD theo a là
A. 4 a 3 3
B. 3 a 3 10
C . 4 a 3 15 5
D . 2 a 3 15 3
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, BC = a, cạnh bên SA vuông góc với đáy, SA = a 3 . Gọi M là trung điểm của AC. Tính cotang góc giữa hai mặt phẳng (SBM) và (SAB).
A. 3 2
B. 1
C. 21 7
D. 2 7 7
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B. Biết SAB là tam giác đều và thuộc mặt phẳng vuông góc với mặt phẳng (ABC). Tính theo a thể tích khối chóp S.ABC biết AB = a, AC = a 3
A. a 3 2
B. 6 a 3
C. 4 a 3 6
D. a 3 6 12
Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và D. SA vuông góc với mặt phẳng đáy (ABCD); AB = 2a, AC = CD=a. Mặt phẳng (P) đi qua CD và trọng tâm G của tam giác SAB cắt các cạnh SA, SB lần lượt tại M và N. Tính thể tích khối chóp S.CDMN theo thể tích khối chóp S.ABCD
A. V S . C D M N = 14 27 V S . A B C D
B. V S . C D M N = 4 27 V S . A B C D
C. V S . C D M N = 10 27 V S . A B C D
D. V S . C D M N = V S . A B C D 2