cho hình chóp S.ABCD đáy là hình chữ nhật có cạnh AB=a AD=2a. gọi o là giao điểm của đường thẳng AC và BD.G là trọng tâm tam giác SAD biết SO vuông góc với mặt phẳng ABCD, góc giữa đường thẳng SC và mặt phẳng ABCD =60 độ. tính theo a khoảng cách từ điểm G đến mặt phẳng SCD.
cho tam giác ABC có góc A = 90 độ , đường cao AH , gọi D và E lần luotj là hình chiếu của H trên AB và AC. Biết BH=4cm, HC=9cm.
a, tính độ dài DE
b, cm : AD.DB=AE.AC
c, các đường thẳng vuông góc với DE tại D và E lần lượt cắt BC tại M , n
cm : M là trung điểm của BH , N là trung điểm của CH
d, tính diện tích tứ giác DEMN
( vẽ giúp hình là chính ạ camon)
a) Cho tam giác ABC có cạnh AB=1,2345; cạnh AC=2,3456 và hai trung tuyến BM, CN vuông góc với nhau. Tính độ dài cạch BC
b) Cho hình thang ABCD có hai đáy là AB, CD. Gọi M, N là trung điểm của AB, CD. Biết MN= 2,2222; BD=3,3333 và AC=5,5555. Tìm diện tích hình thang
cho tam giác ABC và điểm K thuộc cạnh BC sao cho KB = 2KC, L là hình chiếu của B trên AK, F là trung điểm BC, góc KAB bằng 2 lần góc KAC. CHứng minh rằng FL vuông góc với AC
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. hình chiếu của S lên (ABCD) trùng với trung điểm M của cạnh AB. Biết SA=a\(\sqrt{2}\) , AC=2a, SM=\(\frac{a\sqrt{5}}{2}\) . Tính VS.ABCD và d(SM,AC)
Cho tam giác ABC nội tiếp trong 1 đường tròn. M là điểm bất kì trên cung AC( không chứa điểm B). Kẻ MH vuông góc AC
; Mk vuông góc BC. Gọi P,Q tương ứng là trung điểm của AB và KH. Chứng minh rằng tam giác PQM là tam giác vuông
Cho hình vuông ABCD tâm O, cạnh hình vuông bằng 10cm. Gọi I là 1 điểm bất kì nằm trên nửa đường tròn đi qua 3 điểm A,O,D không chứa điểm O. IO cắt cạnh BC tại J. Cạnh DK của hình bình hành IJKD cắt BC tại E, EH là đường cao của tam giác EKJ.
a)Tính số đo của góc HEK
b) Chứng minh rằng IJ>10 căn 2 cm
Cho tam giác ABC có 3 góc nhọn (AB<AC) nội tiếp (O) , kẻ đường cao AH. Gọi M,N là hình chiếu vuông góc của H trên AB và AC. Kẻ NE vuông góc AH. Đường vuông góc với AC kẻ từ C cắt (O) tại I và AH tại D , AH cắt (O) tại F.
a) CM góc ABC + góc ACB = góc BIC và tứ giác DENC nội tiếp
b) CM : AM.AB= AN.AC và tứ giác BFIC là hình thang cân
c) Tứ giác BMED nội tiếp
Cho một đường tròn tâm O,đường kính AB=12cm dây CD có độ dài = 12cm và vuông góc với AB tại H
a,Tính AH,HB
b,Gọi M,N lần lượt là hình chiếu của H lên AC,BC . Tính S tứ giác CMHN
Cho tam giác ABC vuông tại A và H là điểm trên cạnh BC ( H khác trung điểm M của BC ) thõa mãn hệ thức AH2 = HB . HC .
Chứng minh AH vuông góc với BC .