Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Duy Khánh

Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông cân tại \(B,AB=a,SA\perp AB,SC\perp BC,SB=2a.\)Gọi \(M,N\) lần lượt là trung điểm \(SA,BC\). Gọi \(\alpha\) là góc giữa \(MN\) với \(\left(ABC\right)\) .Tính \(cos\alpha\).

Nguyễn Việt Lâm
21 tháng 7 2021 lúc 21:04

Gọi D là hình chiếu vuông góc của S lên (ABC)

\(SD\perp\left(ABC\right)\Rightarrow SD\perp AB\) , mà \(AB\perp SA\left(gt\right)\Rightarrow AB\perp\left(SAD\right)\Rightarrow AB\perp AD\)

\(\Rightarrow AD||BC\)

Tương tự ta có: \(BC\perp\left(SCD\right)\Rightarrow BC\perp CD\Rightarrow CD||AB\)

\(\Rightarrow\) Tứ giác ABCD là hình vuông

\(\Rightarrow BD=a\sqrt{2}\)

\(SD=\sqrt{SB^2-BD^2}=a\sqrt{2}\)

Gọi P là trung điểm AD \(\Rightarrow MP\) là đường trung bình tam giác SAD

\(\Rightarrow\left\{{}\begin{matrix}MP=\dfrac{1}{2}SD=\dfrac{a\sqrt{2}}{2}\\MP||SD\Rightarrow MP\perp\left(ABC\right)\end{matrix}\right.\)

\(\Rightarrow\alpha=\widehat{MNP}\)

\(cos\alpha=\dfrac{NP}{MN}=\dfrac{NP}{\sqrt{NP^2+MP^2}}=\dfrac{a}{\sqrt{a^2+\dfrac{a^2}{2}}}=\dfrac{\sqrt{6}}{3}\)


Các câu hỏi tương tự
Pham hang hang
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết