Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B. AB = BC = a 3 , góc SAB = SCB = 90 0 và khoảng cách từ A đến mặt phẳng (SBC) bằng a 2 . Thể tích khối cầu ngoại tiếp hình chóp S.ABC là
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, AB =a. Đường thẳng vuông góc với mặt phẳng ( ABC) và S A = a 3 Tính thể tích V của khối chóp S.ABC
A. 2 a 3 6
B. 3 a 3 6
C. 2 a 3 2
D. 3 a 3 2
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B , AB =a, BC =a 3 Biết rằng SA vuông góc với mặt phẳng đáy và diện tích xung quanh của khối chóp S.ABC bằng 5 a 2 3 2 . Tính theo a khoảng cách d từ A đến mặt phẳng (SBC) gần với giá trị nào nhất sau đây ?
A. 0,72a
B. 0,9a
C. 0,8a
D. 1,12a
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B. Biết A B = B C = 3 , S A B = S C B = 90 O và khoảng cách từ A đến mặt phẳng (SBC) bằng a 2 Tính diện tích mặt cầu ngoại tiếp hình chóp S.ABC
A. 16 πa 2
B. 12 πa 2
C. 8 πa 2
D. 2 πa 2
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc với đáy ABC, góc giữa hai mặt phẳng (SBC) và (ABC) bằng 60°. Tính thể tích V của khối chóp S.ABC.
Cho khối chóp S.ABC có đáy là tam giác vuông tại A SB
⊥ ( A B C ) , A B = a , A C B ^ = 30 0 , góc giữa đường thẳng SC và mặt phẳng (ABC) là 60°. Tính thể tích V của khối chóp S.ABC theo a.
A. V= 3 a 3
B. V= a 3
C. V= 2 a 3
D. V= 3 a 3 2
Cho hình chóp S.ABC có tam giác ABC vuông cân tại B, AC= a 2 mặt phẳng (SAC) vuông góc với mặt đáy (ABC). Các mặt bên (SAB), (SBC) tạo với mặt đáy các góc bằng nhau và bằng 60 o Tính theo a thể tích V của khối chóp S. ABC.
Cho hình chóp S.ABC có đáy ABC là tam giác cân tại A, AB = AC = a 3 và góc A B C ^ = 30 0 .Biết SA vuông góc với mặt phẳng đáy và SC = 2a. Thể tích hình chóp là:
A . 3 a 3 3 4
B . a 3 3 4
C . a 3 3 2
D . 3 a 3 3 2
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại C ; SA vuông góc với đáy; SC = a. Gọi α là góc giữa hai mặt phẳng (SBC) và (ABC). Tính để thể tích khối chóp S.ABC lớn nhất