Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
mai bảo như

Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B , SA(ABC) . Kẻ AH , AK lần lượt vuông góc với SB , SC tại H và K , có SA = AB = a .

1)    Chứng minh tam giác SBC vuông .

2)    Chứng minh tam giác AHK vuông và tính diện tích tam giác AHK .

3)    Tính góc giữa  AK và (SBC) .

Khôi Bùi
5 tháng 5 2022 lúc 17:40

1) Ta có : \(SA\perp\left(ABC\right)\Rightarrow SA\perp BC\)

BC \(\perp AB;BC\perp SA\Rightarrow BC\perp\left(SAB\right)\Rightarrow BC\perp SB\) \(\Rightarrow\Delta SBC\perp\) tại B 

2) \(BC\perp\left(SAB\right)\Rightarrow BC\perp AH\) . Mà 

\(AH\perp SB\Rightarrow AH\perp\left(SBC\right)\Rightarrow AH\perp HK\)  \(\Rightarrow\Delta AHK\perp\) tại H 

\(\Delta SAB\perp\) tại A ; \(AH\perp SB\) có : \(AH=\dfrac{SA.AB}{\sqrt{SA^2+AB^2}}=\dfrac{a^2}{\sqrt{2a^2}}=\dfrac{\sqrt{2}}{2}a\)

AC = \(\sqrt{AB^2+BC^2}=\sqrt{2a^2}=\sqrt{2}a\)

\(\Delta SAC\perp\) tại A có : \(AK\perp SC\) có : 

\(AK=\dfrac{SA.AC}{\sqrt{SA^2+AC^2}}=\dfrac{a.\sqrt{2}a}{\sqrt{a^2+2a^2}}=\dfrac{\sqrt{6}}{3}a\)

\(HK=\sqrt{AK^2-AH^2}=\sqrt{\dfrac{2}{3}a^2-\dfrac{1}{2}a^2}=\dfrac{\sqrt{6}}{6}a\)

\(S_{AHK}=\dfrac{1}{2}HA.HK=\dfrac{1}{2}\dfrac{\sqrt{2}}{2}a.\dfrac{\sqrt{6}}{6}a=\dfrac{\sqrt{3}}{12}a^2\)

3) AH \(\perp\left(SBC\right)\Rightarrow\left(AK;\left(SBC\right)\right)=\widehat{AKH}\)

\(\Delta AHK\perp\) tại H có : \(sin\widehat{AKH}=\dfrac{AH}{AK}=\dfrac{\sqrt{2}}{2}a:\dfrac{\sqrt{6}}{3}a=\dfrac{\sqrt{3}}{2}\Rightarrow\widehat{AKH}=60^o\)


Các câu hỏi tương tự
Phương Anh
Xem chi tiết
Yến Nguyễn
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Phungg Thanh
Xem chi tiết
Pham hang hang
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết