Đặt câu hỏi Cho hình chóp SABC, có đáy ABC là tam giác vuông cân với BA = BC = a; SA (ABC) và SA = a. Gọi E, F lần lượt là trung điểm của các cạnh AB và AC. a) Tính góc giữa hai mặt phẳng (SAC) và (SBC). b) Tính góc giữa 2 mặt phẳng (SEF) và (SBC). Giúp với ạ
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, A B = 1 , B C = 3 , mặt bên SAC là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Khoảng cách giữa hai đường thẳng SA, BC bằng
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, A B = 1 , B C = 3 , mặt bên SAC là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Khoảng cách từ điểm C đến mặt phẳng (SAB) bằng
Cho hình chóp S.ABC có (SAB),(SAC) cùng vuông góc với mặt phẳng đáy, cạnh bên SB tạo với đáy một góc 60° đáy ABC là tam giác vuông cân tại B với BA = BC = a. Gọi M, N lần lượt là trung điểm của SB, SC. Tính thể tích của khối đa diện A.BMNC
A. a 3 3 4
B. a 3 3 6
C. a 3 3 24
D. a 3 3 8
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB = BC = 2a. Tam giác SAC cân tại S có đường cao S O = a 3 và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính khoảng cách giữa hai đường thẳng AB và SC theo a
A. a 3 3 .
B. 2 a 3 .
C. a 3 2 .
D. a
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân với BA = BC = a, SA ⊥ (ABC), SA = a. Gọi E, F lần lượt là trung điểm của các cạnh AB, AC. Tính cosin góc giữa hai mặt phẳng (SEF) và (SBC).
Cho hình chóp S.ABCD có ABCD là hình vuông cạnh a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. M, N, P lần lượt là trung điểm của SB, BC, SD. Tính khoảng cách giữa AP và MN.
A. 3 a 15
B. 3 a 5 10
C. 4 a 15
D. a 5 5
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, BC=2a, SA vuông góc với mặt phẳng đáy và SA=a 3 . Gọi M là trung điểm của AC. Khoảng cách giữa hai đường thẳng AB và SM bằng:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, BC=2a, SA vuông góc với mặt phẳng đáy và SA=2a 3 . Gọi M là trung điểm của AC. Khoảng cách giữa hai đường thẳng AB và SM bằng