Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Cho hình chóp đều S.ABC. Chứng minh rằng:

a) Mỗi cạnh bên của hình chóp đó vuông góc với cạnh đối diện;

b) Mỗi mặt phẳng chứa một cạnh bên và đường cao của hình chóp đều vuông góc với cạnh đối diện.

Cao Minh Tâm
15 tháng 11 2018 lúc 16:58

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Vì S.ABC là hình chóp đều nên ∆ABC là tam giác đều và có SA = SB = SC. Do đó khi ta vẽ SH ⊥ (ABC) thì H là trọng tâm của tam giác đều ABC và ta có AH ⊥ BC. Theo định lí ba đường vuông góc ta có SA ⊥ BC.

Chứng minh tương tự ta có SB ⊥ AC và SC ⊥ AB

b) Vì BC ⊥ AH và BC ⊥ SH nên BC ⊥ (SAH)

Chứng minh tương tự ta có CA ⊥ (SBH) và AB ⊥ (SCH).


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Vy Nguyễn
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Ngọc
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết