Cho hình bình hành ABCD. Đường thẳng qua B cắt DC tại M,đường thẳng qua D cắt BC tại N sao cho BM=CN.Gọi I là giao điểm của BM và DN.Chứng minh IA là tia phân giác của góc BID.
Cho hình bình hành ABCD.Trên CD,BC lấy M,N sao cho BM=DN. BM giao DN tại I .Chứng minh IA là tia phân giác của \(\widehat{DIB}\)
Cho hình vuông ABCD. Lấy điểm M thuộc tia đối của tia CB, điểm N thuộc tia đối của tia DC sao cho DN=BM. Đường thẳng song song với AN kẻ từ M và đường thẳng song song với AM kẻ từ N cắt nhau tại F. CMR:
a, Tứ giác ANFM là hình vuông
b, Điểm F nằm trên đường phân giác của góc MCN
c, AC vuông góc với CF
d, Ba điểm B,D,O thẳng hàng (O là trung điểm của AF)
e, Khi M di chuyển trên tia Cx thì O di chuyển trên đường nào?
Cho hình vuông ABCD có độ dài cạnh bằng 4 cm. Tia phân giác của góc ACB cắt cạnh AB tạii M. Vẽ đường tròn đươngf kính CM, Đường tròn này cắt đường chéo AC tạii điểm E E khác C . Tia ME cắt cạnh AD tại điểm N tia CN cắt đường tròn đường kính CM tại điểm I I khác C .a Chứng minh tam giác CBM bằng tam giác CEM và tam giác CEN bằng tam giác CDN , từ đó suy ra CN là tia phân giác của góc ACD.b Chứng minh hệ thức AM2 AN2 BM DN 2.c Chứng minh rằng 3 điểm B, I, D thẳng hàng.d Tính diện tích của tam giác AMN.
Cho đường tròn (O; R) đường kính AB. Kẻ tiếp tuyến Ax, lấy P trên Ax (AP > R). Từ P kẻ tiếp tuyến PM với (O)
a, Chứng minh bôn điểm A, P, M, O cùng thuộc một đường tròn
b, Chứng minh BM // OP
c, Đường thẳng vuông góc với AB tại O cắt tia BM tại N. Chứng minh tứ giác OBNP là hình bình hành
d, Giả sử AN cắt OP tại K; PM cắt ON tại I; PN cắt OM tại J. Chứng minh I, J, K thẳng hàng
1 , Cho hình vuông ABCD có góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HD
a , Chứng minh rằng ABMN là hình bình hành .
b , Chứng minh rằng N là trực tâm của tam giác AMD
c , Chứng minh rằng góc BMD = 90 độ
d , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .
2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường chéo AC , BD cắt nhau tại O . Vẽ DE , DF lần lượt vuông góc với AB và BC . Chứng minh rằng tam giác EOF cân.
3 , Cho hình thang ABCD có góc A = 60 độ . Trên tia AD lấy M , trên tia Bc lấy N sao cho AM = DN
a , Chứng minh rằng tam giác ADM = tam giác DBN
b , Chứng minh rằng góc MBN = 60 độ
c , Chứng minh rằng tam giác BNM đều .
4 , Cho hình vuông ABCD , vẽ góc xAy = 90 độ . Ax cắt BC ở M , Ay cắt CD ở N
a , Chứng minh rằng tam giác MAN vuông cân
b , Vẽ hình bình hành AMFN có O là giao điểm 2 đường chéo . Chứng minh rằng OA = OC = \(\frac{1}{2}\) AF và tam giác ACF vuông tại C .
5 , Cho hình vuông ABCD . Trên BC lấy điểm E . Từ A kẻ vuông góc với AE cắtt CD tạ F . Gọi I là trung điểm của EF . M là giao điểm của AI và CD . Qua E kẻ đường thẳng song song với CD cắt AI tại N .
a , Chứng minh rằng MENF là hình thang
b , Chứng minh rằng chu vi tam giác CME không đổi khi E chuyển động trên BC .
Cho đường tròn tâm O và điểm S nằm ngoài đường tròn .Từ S kẻ 2 tiếp tuyến SA,SB tới đường tròn. Gọi M là trung điểm của SA. Tia BM cắt đường tròn tâm O tại N. Kẻ dây AC sao cho AO là tia phân giác góc BAC. Chứng minh s,N, C thẳng hàng
BÀI 3. Cho tam giác ABC. Trên tia đối của tia BC lấy M sao cho BM = BA. Trên tia đối tia CB lấy N sao cho CN = CA. Qua M kẻ đường thẳng song song với AB, qua N kẻ đường thẳng song song với AC, chúng cắt nhau tại P.
a) Chứng minh MA là tia phân giác của PMB , NA là tia phân giác của PNC . b) Chứng minh PA là tia phân giác của MNP .
c) Gọi D là trung điểm AM, E là trung điểm AN, các đường thẳng BD, CE cắt nhau tại Q. Chứng minh QM = QN.
d) Chứng minh ba điểm P, A, Q thẳng hàng.
Tam giác ABC vuông tại A qua C kẻ d vuông góc AC từ trung điểm M của AC kẻ ME vuông góc BC (E thuộc BC) , đg thẳng ME cắt (d) tại H , cắt AB tại K a CMR: tam giác AMK=∆CMH .Suy ra AKCH là hình bình hành b) gọi D là giao điểm của AH và BM .Chứng minh rằng BMCH nội tiếp.Xđ tâm o