Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sou Ka

​Cho hình bình hành ABCD. trên tia đối của tia AD lấy E, trên đia đối của CD lấy F sao cho AE = AD và CF = CD.

a) Chứng minh: Tứ giác ABEC là hình bình hành

b) Ba điểm E, B, F thẳng hàng

Sou Ka
30 tháng 10 2020 lúc 20:35

giúp em với

Khách vãng lai đã xóa
ミŇɦư Ἧσς ηgu lý ミ
30 tháng 10 2020 lúc 20:38


A


BCDFEOa, Vì tứ giác ABCD là hình hình hành

⇒ ⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪AD // BCAD = BC AB = CDAB // CD{AD // BCAD = BC AB = CDAB // CD

Vì AD // BC

⇒ AD // BE

Vì {AD = BCBE= BC{AD = BCBE= BC

⇒ AD = BE

Tứ giác EADB có

{AD // BEAD = BE{AD // BEAD = BE

⇒ Tứ giác EADB là hình bình hành (đpcm)

b, Vì tứ giác EADB là hình bình hành

⇒ AE // BD (1)

Vì {AB = CDDF = CD{AB = CDDF = CD

⇒ AB = DF

Vì AB // CD

⇒ AB // DF

Tứ giác ABDF có

{AB = DFAB // DF{AB = DFAB // DF

⇒ Tứ giác ABDF là hình bình hành

⇒ AF // BD (2)

Từ (1), (2) ⇒ E, A và F thẳng hàng (đpcm)

c, Vì tứ giác EADB là hình bình hành

⇒ AE = BD (3)

Vì tứ giác ABDF là hình bình hành

⇒ AF = BD (4)

Từ (3), (4) ⇒ AE = AF

Vì {AE = AFE, A, F thẳng hàng {AE = AFE, A, F thẳng hàng 

⇒ A là trung điểm của EF

⇒ CA là đường trung tuyến của ΔCEF

Vì DC = DF

⇒ D là trung điểm của EF

⇒ ED là đường trung tuyến của ΔCEF

Vì BE = BC

⇒ B là trung điểm của EC

⇒ FB là đường trung tuyến của ΔCEF

Như vậy

⎧⎩⎨⎪⎪CA là đường trung tuyến của ΔCEF ED là đường trung tuyến của ΔCEFFB là đường trung tuyến của ΔCEF{CA là đường trung tuyến của ΔCEF ED là đường trung tuyến của ΔCEFFB là đường trung tuyến của ΔCEF

⇒ CA, ED, FB đồng quy (tại trọng tâm của ΔCEF) (đpcm)

 học tốt ;-;

Khách vãng lai đã xóa
☣Hoàng Huy☣
30 tháng 10 2020 lúc 20:38
Tứ giác có hai cặp cạnh đối song song là hình bình hành.Tứ giác có các cạnh đối bằng nhau là hình bình hành.Tứ giác có một cặp cạnh đối vừa song song và vừa bằng nhau là hình bình hành.Tứ giác có các góc đối bằng nhau là hình bình hành.Tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường là hình bình hành.
Khách vãng lai đã xóa

Các câu hỏi tương tự
Diệu Anh Hoàng
Xem chi tiết
Dough
Xem chi tiết
nguyễn chi
Xem chi tiết
Nola
Xem chi tiết
Đàm Nguyễn Khánh Ly
Xem chi tiết
Khánh Chi Trần
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Lê Vũ Anh Thư
Xem chi tiết
Bảo Châu Trần
Xem chi tiết