Cho hình bình hành ABCD. Trên đường chéo BD lấy hai điểm E và F sao cho BE=DF nhỏ hơn 1/2 BD
a) chứng minh rằng : AF=CE
b) tia AE cắt BC tại I, tia CF cắt AD tại K. Chứng minh rằng ba đường thẳng AC, BD,và IK đồng quy.
Bài 1: Cho △ ABC vuông ở A (AB<AC). Kẻ đường cao AH. Gọi E, N, M theo thứ tự là trung điểm của AB, AC và BC
a) Chứng minh : Tứ giác EHMN là hình thang cân
b) Chứng minh: HE ⊥ HN
c) Từ A kẻ đường thẳng song song với BC cắt tia ME, MN theo thứ tự ở K và F. Chứng minh: Tứ giác AMBK là hình thoi
d) Chứng minh: AM, EN,BF và KC đồng quy
Bài 2: Cho hình bình hành ABCD tâm O. Trên đoạn OD lấy điểm E.Kẻ CF // AE (F ϵ BD)
a) Chứng minh: Tứ giác AFCE là hình bình hành
b) Cho AF cắt BC tại M, CE cắt AD tại N. Chứng minh: M,O,N thẳng hàng
c) Lấy K đối xứng C qua E. Xác định vị trí của E trên OD để tứ giác AKDO là hình bình hành
d) Lấy I đối xứng với A qua D, lấy H đối xứng A qua B. Hình Bình hành ABCD phải có thêm điều kiện gì để I và H đối xứng với nhau qua đường thẳng AC?
MÌNH CẦN GẤP!! CÁC BẠN GIÚP MÌNH NHA!!!
Bài 1: Cho △ ABC vuông ở A (AB<AC). Kẻ đường cao AH. Gọi E, N, M theo thứ tự là trung điểm của AB, AC và BC
a) Chứng minh : Tứ giác EHMN là hình thang cân
b) Chứng minh: HE ⊥ HN
c) Từ A kẻ đường thẳng song song với BC cắt tia ME, MN theo thứ tự ở K và F. Chứng minh: Tứ giác AMBK là hình thoi
d) Chứng minh: AM, EN,BF và KC đồng quy
Bài 2: Cho hình bình hành ABCD tâm O. Trên đoạn OD lấy điểm E.Kẻ CF // AE (F ϵ BD)
a) Chứng minh: Tứ giác AFCE là hình bình hành
b) Cho AF cắt BC tại M, CE cắt AD tại N. Chứng minh: M,O,N thẳng hàng
c) Lấy K đối xứng C qua E. Xác định vị trí của E trên OD để tứ giác AKDO là hình bình hành
d) Lấy I đối xứng với A qua D, lấy H đối xứng A qua B. Hình Bình hành ABCD phải có thêm điều kiện gì để I và H đối xứng với nhau qua đường thẳng AC?
Cho hình bình hành ABCD. Gọi O là giao điểm của hai đường chéo AC và BD. Trên AB lấy điểm E, trên CD lấy điểm F sao cho AE = CF.
a) Chứng minh: tam giác AEO = tam giác CFO
b) Chứng minh: E và F đối xứng nhau qua O.
c) Từ E vẽ Ex // AC cắt BC tại I, vẽ Fy // AC cắt AD tại K.
Chứng minh rằng: Tứ giác KEIF là hình bình hành.
Bài 4 (3,0 điểm). Cho hình bình hành ABCD. Trên cạnh AB lấy điểm E, trên cạnh CD lấy điểm F sao cho AE = CF. a) Chứng minh tứ giác AECF là hình bình hành. b) Chứng minh DE = BF c) Gọi O là giao điểm của AC và BD. I là điểm đối xứng của A qua D. Chứng minh OD // CI. d) Chứng minh BD, EF, AC đồng quy tại một điểm.
Cho hình bình hành ABCD. Kẻ đường chéo BD. Trên BD lấy 2 điểm E và F sao cho DE=BF
a)Chứng minh tứ giác AECF là hình bình hành
b) Gọi M là giao điểm của AE và DC; N là giao điểm của CF và AB. Chứng minh AM=CN
c) Chứng tỏ rằng AC,NM, và DB cùng đi qua 1 điểm
Cho hình hành ABCD. Điểm E trên cạnh AB, điểm F trên cạnh CD sao cho AE = CF. Chứng minh rằng :
a)Tứ giác AECF là hình bình hành
b)Các đường thẳng AC, BD,EF đồng quy