Cho hình chữ nhật ABCD, O là giao điểm hai đường chéo. M thuộc CD và N thuộc AB sao cho DM = BN.
a) Chứng minh ANCM là hình bình hành, từ đó suy ra các điểm M, O, N thẳng hàng.
b) Qua M kẻ đuờng thẳng song song vói AC cắt AD ở E, qua N kẻ đường thẳng song song với AC cắt BC ở F. Chứng minh tứ giác ENFM là hình bình hành.
c) Tìm vị trí của điểm M, N để ANCM là hình thoi.
d) BD cắt NF tại I. Chứng minh I là trung điểm của NF
Cho hình chữ nhật ABCD , O là giao điểm hai đường chéo . Lấy ddiem E thuộc cạnh CD, EO cắt AB tại F . Đường thẳng qua E song song với AC cắt AD tại M , đường thẳng qua E song song với BD cắt BC ở N.
a) chứng minh BEDF là hình bình hành
b) chứng minh MENF là hình bình hành
c) chứng minh M,N,O thẳng hàng
d) gọi I là giao điểm NF và BD chứng minh trung điểm NF
Cho hình bình hành ABCD tâm O. Gọi M, N lần lượt là trung điểm của AB và CD.
a) Chứng minh DN = AM và chứng minh AMND là hình bình hành.
b) Chứng minh MBND là hình bình hành.
c) Chứng minh AN // CM và AN = CM.
d) Chứng minh M, O và N thẳng hàng.
e) Đường chéo BD cắt AN ở I và CM ở Q. Chứng minh BQ = QI = ID.
cho hình bình hành ABCD . Lấy M thuộc cạnh AB , N thuộc cạnh CD sao cho AM = CN
a) chứng minh DM//BN
b) DM cắt AC tại I, BN cắt AC tại K . Chứng minh tứ giác MINK là hình bình hành
c) Gọi O là giao điểm của AC và BD . Chứng minh M đối xứng vs N qua O
Cho hình bình hành ABCD. M thuộc AB, N thuộc CD sao cho AM=CN. AC cắt BD tại O. MD cắt AN tại E. MC cắt BN tại F. CMR:
a) AN=CM; AN song song CM
b) AC, BD, MN đồng quy
c) ME=NF và E, O, F thẳng hàng
Cho hình chữ nhật ABCD, O là giao điểm 2 đường chéo, Lấy E thuộc cạnh CD, EO cắt AB tại F. Đường thẳng qua E song song với AC cắt AD tại M, đường thẳng qua E song song với BD cắt BC tại N.
a) Chứng minh tứ giác BEDF là hình bình hành
b) Chứng minh tứ giác MÈN là hình bình hành
c) Chứng minh ba điểm M , O, N thẳng hàng
d) Gọi I là giao điểm của NF và BD. Chứng minh I là trung điểm NF
Cho hình chữ nhật ABCD, O là giao điểm 2 đường chéo, Lấy E thuộc cạnh CD, EO cắt AB tại F. Đường thẳng qua E song song với AC cắt AD tại M, đường thẳng qua E song song với BD cắt BC tại N.
a) Chứng minh tứ giác BEDF là hình bình hành
b) Chứng minh tứ giác MÈN là hình bình hành
c) Chứng minh ba điểm M , O, N thẳng hàng
d) Gọi I là giao điểm của NF và BD. Chứng minh I là trung điểm NF
Bài 1: Cho hình thang ABCD (AB//CD). AB cắt BD tại O, gọi M là trung điểm của AB, OM cắt CD tại N. Chứng minh rằng AM/CN = OB/OD; NC=ND
Bài 2: Cho hình bình hành ABCD, 1 đường thẳng d đi qua D cắt đường chéo AC ở I, cắt AB và BC lần lượt tại M, N. Chứng minh rằng:
a) IM/ID = ID/IN
b) MB/AB = NB/NC