Ai Giúp Ạ
Cho hình bình hành ABCD (AB > AD). Gọi E và K lần lượt là trung điểm của CD và AB. BD cắt AE, AC, CK lần lượt tại N, O và I. Chứng minh rằng:
a. Tứ giắc AECK là hình bình hành.
b. Ba điểm E, O, K thẳng hàng.
c. DN = NI = IB
d. AE = 3KI
Cho hình bình hành ABCD, hai đường chéo cắt nhau tại O. Gọi M là trung điểm của AB ; N là giao điểm của đường thẳng OM với cạnh DC
a/ cm N là trung điểm of DC
b/ đường thẳng AB cắt AN tại E, cắt CM tại F. Cm DE=EF=FB
1.Cho hình bình hành ABCD, AC cắt BD ở O. Trên đường chéo AC lấy E,F để AE=EF=FC. DE cắt AB ở M, BF cắt Cd ở N. CMR:
a) BFDE là hình bình hành
b) O là trung điểm của MN
2. Cho hình bình hành ABCD. Gọi E,F lần lượt là trung điểm của AB, AD. Đường thẳng EF cắt các tia CD,CB ở H và K. CMR:
a) FH = EK
b) tan giác CEF và tam giác HCK có cùng trọng tâm
b1: cho tam giác nhọn ABC. Gọi D,E,F lần lượt là trung điểm của AC,AB,BC
a) tứ giác BCDE là hình gì? vì sao?
b) tứ giác BEDF là hình gì? vì sao?
c) gọi H là trực tâm của tam giác ABC. M,N,P lần lượt là trung điểm của BH,CH,AH. cmr: tứ giác DEMN là hình chữ nhật
d) gọi O là giao điểm của MD và EN. cmr 3 điểm O,P,F thẳng hàng
b2: cho tam giác ABC cân tại A. đường trung tuyến AI. E là trung điểm của AC, M là điểm đối xứng với I qua E.
a) cmr tứ giác AMCI là hình chữ nhật
b) AI cắt BM tại O. cmr OE // IC
b3: cho tam giác ABC vuông tại A, có góc B bằng 60 độ, AB = 3cm, AM là trung tuyến của tam giác.
a) Tính độ dài cạnh BC và số đo góc MAC
b) trung trực của cạnh BC cắt AB tại E và cắt AC tại F. chứng minh B với E đối xứng qua AC và FC = 2FA
c) gọi I là trung điểm của đoạn FC. K là trung điểm của đoạn FE. chứng minh tứ giác AMIK là hình chữ nhật và tính diện tích hình chữ nhật AMIK.
d) P là trung điểm của FI, Q là trung điểm của FK. cmr 3 đường thẳng AQ,BF,MP đồng quy
cho hình bình hành ABCD gọi EF lần lược là trung điểm của AB và CD , AF cắt DE tại M và EC cắt BF tại N . Chứng minh các tứ giác sau đây là hình bình hành :
A) AEFD
B) EBCF
C) AECF
D)EBFD
E ) chứng minh M là chung điểm của AF và DE, N là chung diểm của EC và FB
cho hình bình hành ABCD gọi I,K lần lượt là trung điểm CD và AB đường chéo BD cắt AI,CK lần lượt tại E,F
cmr DE=EF=FB
cho hình bình hành ABCD gọi I,K lần lượt là trung điểm CD và AB đường chéo BD cắt AI,CK lần lượt tại E,F
cmr DE=EF=FB
Cho hình bình hành ABCD, điểm E thuộc AB, điểm F thuộc AD. đường thẳng qua D và song song với EF cắt AC tại I. đường thẳng qua B và song song với EF cắt AC tại K. CMR:
a) AI=CK
b) N là giao điểm của EF và AC. CMR : \(\frac{AB}{AE}+\frac{AD}{AF}=\frac{AC}{AN}\)
cho hình bình hành ABCD và O là giao điểm của AC và BD trên đường chéo AC lấy 2 điểm M và N sao cho AM=MN=NC
chứng minh tứ giác BMDN là hình bình hành
BC cắt DN tại K chứng minh N là trọng tâm của tam giác ABC
DC cắt BN tại I và AB cắt DM tại H chứng minh I,O,H thẳng hàng