Cho hình bình hành ABCD ; góc BAD = 120 độ ; AB = 2 AD
a) CMR: Tia phân giác của góc ADC đi qua trung điểm E của AB .
b) Gọi F là trung điểm DC . CMR tam giác ADF đều và AD vuông góc với AC
Bai 1 : Cho hình bình hành ABCD ; góc BAD = 120 độ ; AB = 2 AD
a) CMR: Tia phân giác của góc ADC đi qua trung điểm E của AB .
b) Gọi F là trung điểm DC . CMR tam giác ADF đều và AD vuông góc với AC
Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR: góc EMD = 3 góc AEM
Bìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I \(\in\)BC). CMR: a) I là trung điểm BC
b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB, AC. Gọi I là trung điểm của BC. CMR: AI vuông góc với EF.
Bài 4: Cho tam giác ABC cân tại A . D bất kì thuộc BC . Qua D kẻ đường thẳng vuông góc với BC cắt AB và AC lần lượt tại E,F . Gọi I,K lần lượt là trung điểm của BE và CF .
a) CMR: AKDI là hình bình hành
b) Nêu thêm điều kiện của tam giác ABC và của điểm D để DIAK là hình vuông
Cho hình bình hành ABCD có góc A= 120 và AB=2AD
a) CMR tia phân giác của góc D cắt cạnh AB tại điểm E là trung điểm của AB
b) CMR: AD vuoogn góc với AC
Cho hình bình hành ABCD có góc A=120 độ và AB=2AD.Tia phân giác của góc D cắt AB tại E. CMR
a, E là trung điểm của AB
b, AD vuông góc với AC
Cho hình bình hành ABCD, góc A= 120 độ. AB=2AD. Tia phân giác góc D cắt AB tại E
a, CM : E là trung điểm AB
b, Gọi F là trung điểm CD. CM: AF// EC, AD vuông góc AC
Cho hình thang vuông ABCD, góc A = góc D = 90 độ, biết AB+DC=AD. Cmr: phân giác của góc ADC đi qua trung điểm của BC
Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR: góc EMD = 3 góc AEM
Bìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I thuộc BC). CMR: a) I là trung điểm BC
b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB, AC. Gọi I là trung điểm của BC. CMR: AI vuông góc với EF.
Bài 4: Cho tam giác ABC cân tại A . D bất kì thuộc BC . Qua D kẻ đường thẳng vuông góc với BC cắt AB và AC lần lượt tại E,F . Gọi I,K lần lượt là trung điểm của BE và CF .
a) CMR: AKDI là hình bình hành
b) Nêu thêm điều kiện của tam giác ABC và của điểm D để DIAK là hình vuông
cho hình bình hành ABCD với AB=2a; B=a. Gọi O là trunh điểm của cạnh AB và I là trung điểm của cạnh DC .
a)chứng minh : tam giác DOC vuông
b)các đường thẳng DO và BC cắt nhau tại E; CO và AD cắt nhau tại F. tứ giác DCEF là hình gì?
c)giả sử góc ADC= 120 độ .tính CF,DEvà diện tích DCEF theo a.
d)gọi D là giao điểm của AC và DO:
* chứng minh FG đi qua I .
*tính FI và diện tích tứ giác OFAG theo a với góc ADC= 60 độ.
Cho hình bình hành ABCD , AB=6cm ,AD=3cm, I là trung điểm của AB . CMR: DC là tia phân giác của góc ADC