1 ) Cho tam giác ABC . Phân giác góc A cắt cạnh BC tại d . Qua d vẻ đường thẳng song song với AB , đường này cắt AC tại E . Đường thẳng qua E // BC cắt AB tại F
- Chứng minh : AE = BF
2) Cho hình bình hành ABCD . Gọi MNPQ theo thứ tự là trung điểm của cạnh AB , BC , CD , DA đường thẳng AN cắt DM , BP theo thứ tự tại E và F . Đường thẳng CQ cắt BP , DM theo thứ tự G , H
A) chứng minh : tứ giác EFGH là hình bình hành
B ) chứng minh : các đường thẳng AC , BD , EG, FH đồng quy tại một điểm
cho hình vuông ABCD ,gọi O là giao điểm của hai đường chéo .Qua O kẻ đường thằng cắt hai cạnh AB và CD thứ tự tại N và F
1)Chứng minh ON=Ò và tứ giác ANCF là hình bình hành
2)Qua o kẻ đường thẳng vuông góc với NF,dường thẳng đó cắt hai cạnh AD và BC thứ tự tại M,E.Chứng minh tứ giác MNEF là hình vuông
Bài 6: Cho hình thang ABCD có hai đáy là AB và CD. Một đường thẳng song song với AB cắt các cạnh bên AD, BC theo thứ tự ở E và F.
a) Chứng minh ED/AD + BF/BC = 1
b) Các đường chéo của hình thang cắt nhau tại O. Chứng minh OA.OD = OB.OC.
Bài 7: Cho tam giác ABC nhọn, M là trung điểm của BC, E thuộc đoạn thẳng MC. Qua E kẻ đường thẳng song song với AC cắt AB ở D, cắt AM ở K. Qua E kẻ đường thẳng song song với AB cắt AC ở F.
a) Chứng minh CF = DK
b) Gọi H là trực tâm của tam giác ABC. Đường thẳng qua H vuông góc với MH cắt AB và AC theo thứ tự ở I và K’. Qua C kẻ đường thẳng song song với IK’, cắt AH và AB theo thứ tự ở N và P. Chứng minh NC = NP và HI = HK’.
Bài 8: Cho tam giác ABC, điểm M bất kì trên cạnh AB. Qua M kẻ đường thẳng song song với BC cắt AC ở N biết AM = 11 cm, MB = 8 cm, AC = 38 cm. Tính độ dài các đoạn thẳng AN, NC.
Bài 9: Cho góc xAy, trên tia Ax lấy hai điểm D và E, trên tia Ay lấy hai điểm F và G sao cho FD song song với EG. Đường thẳng qua G song song với FE cắt tia Ax tại H. Chứng minh AE 2 = AD.AH.
Bài 10: Cho hình bình hành ABCD. Gọi E là một điểm bất kì trên cạnh AB. Qua E kẻ đường thẳng song song với AC cắt BC ở F và kẻ đường thẳng song song với BD cắt AD ở H. Đường thẳng kẻ quá F song song với BD cắt CD ở G. Chứng minh AH.CD = AD.CG.
Cho tứ giác ABCD có AB=CD( AB không song song với CD). Gọi E,F,G,H theo thứ tự là trung điểm của các cạnh BC, AC, AD, BD
1. Tứ giác EFGH là hình gì
2. Nếu AB vuông góc với CD và AB= 8cm. Tính diện tích tứ giác EFGH
3. Đường thẳng FH cắt AB tại M và CD tại N. Từ B kẻ đường thẳng song song với MN, cắt đường thẳng CD tại D. Chứng minh BN=MP
giúp mình với ạ mình cần gấp 🙏
Cho hình chữ nhật ABCD, O là giao điểm hai đường chéo. M thuộc CD và N thuộc AB sao cho DM = BN.
a) Chứng minh ANCM là hình bình hành, từ đó suy ra các điểm M, O, N thẳng hàng.
b) Qua M kẻ đuờng thẳng song song vói AC cắt AD ở E, qua N kẻ đường thẳng song song với AC cắt BC ở F. Chứng minh tứ giác ENFM là hình bình hành.
c) Tìm vị trí của điểm M, N để ANCM là hình thoi.
d) BD cắt NF tại I. Chứng minh I là trung điểm của NF
Bài 1: Cho tứ giác ABCD, E là trung điểm cạnh AB. Qua E kẻ đường thẳng song song với AC cắt BC ở F. Qua F kẻ đường thẳng song song với BD cắt CD ở G. Qua G kẻ đường thẳng song song với AC cắt AD ở H.
a) Chứng minh tứ giác EFGH là hình bình hành.
b) Tứ giác ABCD cần thêm điều kiện gì để tứ giác EFGH là hình chữ nhật.
Các bạn giúp mình nhé, mình đang cần gấp. Cảm ơn các bạn nhiều.
Cho hình thang ABCD (AB//CD). gỌI E , F theo thứ tự là trung điểm AB , CĐ . gỌI O là trung điểm EF. Qua O kẻ đường thẳng song song với AB cắt AD và BC theo thứ tự tại M,N
a) Tứ giác EMFN là hình gì DS : EMFN là hình bình hành
b) Hình thang ABCD có thêm điều kiện để EMFN là hình thoi DS : ABCD là hình thang cân
c)Hình thang ABCD có thêm điều kiện gì để EMFN là hình vuông DS ABCD là hình thang cân và có 2 đường chéo vuông góc
Cho hình chữ nhật ABCD, O là giao điểm 2 đường chéo, Lấy E thuộc cạnh CD, EO cắt AB tại F. Đường thẳng qua E song song với AC cắt AD tại M, đường thẳng qua E song song với BD cắt BC tại N.
a) Chứng minh tứ giác BEDF là hình bình hành
b) Chứng minh tứ giác MÈN là hình bình hành
c) Chứng minh ba điểm M , O, N thẳng hàng
d) Gọi I là giao điểm của NF và BD. Chứng minh I là trung điểm NF
Cho hình chữ nhật ABCD, O là giao điểm 2 đường chéo, Lấy E thuộc cạnh CD, EO cắt AB tại F. Đường thẳng qua E song song với AC cắt AD tại M, đường thẳng qua E song song với BD cắt BC tại N.
a) Chứng minh tứ giác BEDF là hình bình hành
b) Chứng minh tứ giác MÈN là hình bình hành
c) Chứng minh ba điểm M , O, N thẳng hàng
d) Gọi I là giao điểm của NF và BD. Chứng minh I là trung điểm NF