Cho hình bình hành ABCD có E bất kì trên AB(E khác A,B). DE giao AC tại F và BC tại G. Từ F kẻ đường thẳng song song với AB cắt AD tại H. Chứng minh rằng:
a,tg AEF đồng dạng tg AFE
b, FE/FD = FD/FG
c, 1/AE + 1/AB = 1/HF
* Giúp mk ý c vs ạ *
Cho hình bình hành ABCD. Gọi E là một điểm bất kì trên cạnh AB. Qua E kẻ đường thẳng song song với AC cắt BC ở F và kẻ đường thẳng song song với BD cắt AD ở H. Đường thẳng kẻ quá F song song với BD cắt CD ở G. Chứng minh AH.CD = AD.CG.
Bài 6: Cho hình thang ABCD có hai đáy là AB và CD. Một đường thẳng song song với AB cắt các cạnh bên AD, BC theo thứ tự ở E và F.
a) Chứng minh ED/AD + BF/BC = 1
b) Các đường chéo của hình thang cắt nhau tại O. Chứng minh OA.OD = OB.OC.
Bài 7: Cho tam giác ABC nhọn, M là trung điểm của BC, E thuộc đoạn thẳng MC. Qua E kẻ đường thẳng song song với AC cắt AB ở D, cắt AM ở K. Qua E kẻ đường thẳng song song với AB cắt AC ở F.
a) Chứng minh CF = DK
b) Gọi H là trực tâm của tam giác ABC. Đường thẳng qua H vuông góc với MH cắt AB và AC theo thứ tự ở I và K’. Qua C kẻ đường thẳng song song với IK’, cắt AH và AB theo thứ tự ở N và P. Chứng minh NC = NP và HI = HK’.
Bài 8: Cho tam giác ABC, điểm M bất kì trên cạnh AB. Qua M kẻ đường thẳng song song với BC cắt AC ở N biết AM = 11 cm, MB = 8 cm, AC = 38 cm. Tính độ dài các đoạn thẳng AN, NC.
Bài 9: Cho góc xAy, trên tia Ax lấy hai điểm D và E, trên tia Ay lấy hai điểm F và G sao cho FD song song với EG. Đường thẳng qua G song song với FE cắt tia Ax tại H. Chứng minh AE 2 = AD.AH.
Bài 10: Cho hình bình hành ABCD. Gọi E là một điểm bất kì trên cạnh AB. Qua E kẻ đường thẳng song song với AC cắt BC ở F và kẻ đường thẳng song song với BD cắt AD ở H. Đường thẳng kẻ quá F song song với BD cắt CD ở G. Chứng minh AH.CD = AD.CG.
Cho hình bình hành ABCD. Gọi E là một điểm bất kỳ trên cạnh AB. Qua E kẻ đường thẳng song song với AC cắt BC ở F và kẻ đường thẳng song song với BD cắt AD ở H. Đường thẳng kẻ qua F song song với BD cắt CD ở G. Chứng minh A H . C D = A D . C G .
Bài 1: Cho tứ giác ABCD, E là trung điểm cạnh AB. Qua E kẻ đường thẳng song song với AC cắt BC ở F. Qua F kẻ đường thẳng song song với BD cắt CD ở G. Qua G kẻ đường thẳng song song với AC cắt AD ở H.
a) Chứng minh tứ giác EFGH là hình bình hành.
b) Tứ giác ABCD cần thêm điều kiện gì để tứ giác EFGH là hình chữ nhật.
Các bạn giúp mình nhé, mình đang cần gấp. Cảm ơn các bạn nhiều.
Cho DABC vuông ở A, đường thẳng song song với BC cắt AB ở D và cắt AC ở E. Qua C kẻ tia Cx song song với AB cắt DE ở G.
a) Chứng minh: DABC đồng dạng với DCEG.
b) Chứng minh: DA . EG = DB . DE
c) Gọi H là giao AC và BG. Chứng minh: HC2 = HE . HA
Cho hình bình hành ABCD có AB// CD . gọi O là Giao điểm của AC và BD , qua O kẻ đường thẳng song song với DC cắt AD ở M cắt BC ở N a, chứng minh AM/ AD = BN / BC. b, từ O kẻ đường thẳng song song với AD và BC cắt DC lần lượt E và F. Chứng minh tứ giác DMOE là hình bình hành và AM/AD = MO/DC. c, chứng minh DE= FC. d, chứng minh 1/AB +1/DC= 2/MN
1 ) Cho tam giác ABC . Phân giác góc A cắt cạnh BC tại d . Qua d vẻ đường thẳng song song với AB , đường này cắt AC tại E . Đường thẳng qua E // BC cắt AB tại F
- Chứng minh : AE = BF
2) Cho hình bình hành ABCD . Gọi MNPQ theo thứ tự là trung điểm của cạnh AB , BC , CD , DA đường thẳng AN cắt DM , BP theo thứ tự tại E và F . Đường thẳng CQ cắt BP , DM theo thứ tự G , H
A) chứng minh : tứ giác EFGH là hình bình hành
B ) chứng minh : các đường thẳng AC , BD , EG, FH đồng quy tại một điểm
Cho tam giác ABC, phân giác AD, qua D kẻ đường thẳng song song với AB cắt AC tại E. Qua E kẻ đường thẳng song song với BC cắt AB tại F
a) Chứng minh AE=BF
b) Kẻ phân giác ngoài tại A của tam giác ABC cắt DE tại G. Chứng minh rằng E là trung điểm của DG
c) Đường thẳng vuông góc với AD tại D cắt AB, AC lần lượt tại H, K. Chứng minh AH=2FB
d) Từ E kẻ đường thẳng song song với DK cắt AD tại I.Chứng minh H, I, G thẳng hàng