Chứng minh SOBN = SOD
Do đề bài yêu cầu chứng minh SOBN=SOD mà
thì chắc chắn SOBN=SOD ko phải chứng minh
còn nếu muốn chứng minh thì đến hỏi người ra đề
Chứng minh SOBN = SOD
Do đề bài yêu cầu chứng minh SOBN=SOD mà
thì chắc chắn SOBN=SOD ko phải chứng minh
còn nếu muốn chứng minh thì đến hỏi người ra đề
Cho hình bình hành ABCD có góc BAD cắt cạnh CD tại M và cắt đường thẳng CD tại M ,cắt BC tại N .Gọi O là điểm cách đều 3 điểm C,M,N và K là giao điểm của ob và CD chứng minh :
a)SOBN=SOD
cho hình bình hành ABCD có góc BAD cắt cạnh CD tại M và cắt đường thẳng CD tại M ,cắt BC tại N .Gọi O là điểm cách đều 3 điểm C,M,N và K là giao điểm của ob và CD chứng Minh
a)SOBN=SODC
B1: cho hình bình hành ABCD có M là trung điểm của AB và N là trung điểm của CD.
1) C/m : tứ giác AMND là hình bình hành.
2) C/m: tứ giác AMCN là hình bình hành.
B2: Cho hình bình hành ABCD. Gọi O là giao điểm của 2 đường chéo AC và BD. Một đường thẳng qua O cắt AB tại E và cắt CD tại F.
1) C/m: O là trung điểm của EF.
2) C/m: tứ giác AECF là hình bình hành
3) C/m: tứ giác BDEF là hình bình hành.
B3: cho hình bình hành ABCD. Trên cạnh AB lấy điểm E, trên cạnh CD lấy điểm F sao cho AE=CF. Gọi O là giao điểm của AC và BD.
1) C/m: tứ giác AECF là hình bình hành.
2) C/m: O là trung điểm của EF.
B4: Cho hình bình hành ABCD có hai đường chéo AB và CD cắt nhau tại O. Gọi M,N,P,Q lần lượt là tủng điểm của các đoạn OA, OB, OC, OD.
1)C/m : tứ giác MNPQ là hình bình hành.
2) C/m: các tứ giác ANCQ , BPDM là các hình bình hành.
Giúp mik với nha, thanks !!!!
cho hình bình hành ABCD. Gọi O là giao điểm 2 đường chéo. Gọi M, N là trung điểm của OB,OD
a) chứng minh AMCN là hình bình hành
b) AN cắt CD tại E, CM cắt AB tại F
chứng minh AE= CF và O,E,F thẳng hàng
giúp mình với,mình cảm ơnnnn
Bài 1. Cho hình thang ABCD , O là giao điểm 2 đường chéo AC và BD . Chứng minh rằng : ABCD là hình thang cân nếu OA = OB
Bài 2 : Cho hình thang ABCD ( AB // CD ), AB < CD . Tia phân giác góc A và góc D cắt nhau tại E , tia phân giác góc B và góc C cắt nhau tại F.
a) Tính góc AED , góc BFC
b) Giả sử AE và BF cắt nhau tại M nằm trên cạnh CD . Chứng minh rằng AD + BC = DC
c) Với giả thiết như câu b) , Chứng minh EF nằm trên đường trung bình của hình thang ABCD
Mọi người vẽ hình hộ em nha!
cho hình bình hành ABCD. Gọi O là giao điểm 2 đường chéo. Gọi M,N là trung điểm của OB,OD.
a)cm: AMCN là hình bình hành
b)AN cắt CD tại E, CM cắt AB tại F
cm: AE=CF và O,E,F thẳng hàng
c)cm: E đối xứng vói F qua O
mọi người giúp em với ạ.
Cho hình bình hành ABCD có O là giao điểm 2 đường chéo. Vẽ AE và CF cùng vuông góc với BD.
a) C/m AE=CF.
b) C/m AF=CE.
c) CF cắt AB tại I, AE cắt CD tại K. C/m IK, AC, BD đồng quy.
Bn nào trả lời đầu tiên và đúng mik **** cho.
Mọi người giúp mình với, mình đang cần gấp
1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D;
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE.
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng
5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF
cho tứ giác ABCD có AD= AB =BC<CD hai đường chéo cắt nhau tại O gọi M là giao điểm của hai đường thẳng AD và BC vẽ hình bình hành AMBK đường thẳng KO cắt đường thẳng BC tại N
C/M
a, AC là tia phân giác của góc BAK
b, AM=BN