cho hình bình hành ABCD có DC=2DA từ trung điểm I của CD vẽ IH vuông góc AB (H thuộc AB ) gọi E là giao điểm của AI,DH
chứng minh
a) \(\frac{DE}{HE}=\frac{DA}{HA}\)
b)\(\frac{1}{IH^2}=\frac{1}{AI^2}+\frac{1}{BI^2}\)
Cho hình bình hành ABCD có DC = 2AD=2a. Từ trung điểm I của DC kẻ IH vuông góc với AB tại H, DH cắt AI tại E. CM: 1/IH^2=1/AI^2 + 1/BI^2
cho hình bình hành ABCD có AB=2AD=2a. Từ trung điểm I của AB hạ IH vuông góc với CD, DI cắt AH tại E
1)CM: tam giác ADI cân, từ đó => \(\dfrac{AE}{EH}=\dfrac{AD}{DH}\)
2)gọi K là trung điểm của CD, CM: AIKD là hình thoi
Cho hình bình hành ABCD có DC=2AD=2a. Từ trung điểm I của Dc hạ IH vuông góc với AB tại H; DC cắt AI tại E.
a. chứng minh AE là phân giác của góc DAH
b. CHứng minh 1/AH^2 =1/AI^2 + 1/BI^2
c. cho góc ADC =30 độ. tính AI theo a.
Cho ABCD là hình bình hành,góc D = 60°, DC= 2AD, I là chung điểm của DC, HI vuông góc với AB, AK vuông góc với DC ( H€ AB, K € DC)
A) chứng ming IH=AK
B) tính IK,HB
Ai hộ e vs ạ 💋💋
Bài 1 : Cho hình vuông ABCD có cạnh bằng 3 cm . Chứng minh rằng : 4 đỉnh của hình vuông ABCD cùng nằm trên 1 đường tròn . Hãy tính bán kính đường tròn đó
Bài 2 : Cho tam giác nhọn ABC . Vẽ đường tròn tâm O , bán kính BC , nó cắt các cạnh AB, AC theo thứ tự ở D và E
a)CMR: CD vuông góc với AB , BE vuông góc với AC
b) gọi K là giao điểm của BE và CD. Chứng minh AK vuông góc BC
Bài 3:Cho hình thang ABCD , AB//CD, AB<CD , có góc C=góc D=60 độ , CD=2AD . Chứng minh 4 điểm A, B, C, D cùng thuộc 1 đường tròn. Tính diện tích đường tròn đó biết CD=4cm
Bài 4:Cho tam giác ABC vuông tại A. Trên AB, AC lần lượt lấy các điểm D, E . Gọi M, N, P, Q lần lượt là trung điểm của DE , EB, BC, CD. Chứng minh 4 điểm M, N, P, Q cùng thuộc 1 đường tròn
Cho hình vuông ABCD. Vẽ điểm M thỏa BM vuông góc với BD và M không thuộc các đường thẳng DA và DC. Trung trực của DM cắt AB và BC lần lượt tại F và E. Gọi O là tâm của hình vuông ABCD và I là trung điểm của DM.
1. Chứng minh bốn điểm A, O, I,Cthẳng hàng.
2. Chứng minh rằng góc AFD = góc DEC.
3. Chứng minh rằng DEMF là hình vuông.
1 , Cho hình vuông ABCD có góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HD
a , Chứng minh rằng ABMN là hình bình hành .
b , Chứng minh rằng N là trực tâm của tam giác AMD
c , Chứng minh rằng góc BMD = 90 độ
d , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .
2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường chéo AC , BD cắt nhau tại O . Vẽ DE , DF lần lượt vuông góc với AB và BC . Chứng minh rằng tam giác EOF cân.
3 , Cho hình thang ABCD có góc A = 60 độ . Trên tia AD lấy M , trên tia Bc lấy N sao cho AM = DN
a , Chứng minh rằng tam giác ADM = tam giác DBN
b , Chứng minh rằng góc MBN = 60 độ
c , Chứng minh rằng tam giác BNM đều .
4 , Cho hình vuông ABCD , vẽ góc xAy = 90 độ . Ax cắt BC ở M , Ay cắt CD ở N
a , Chứng minh rằng tam giác MAN vuông cân
b , Vẽ hình bình hành AMFN có O là giao điểm 2 đường chéo . Chứng minh rằng OA = OC = \(\frac{1}{2}\) AF và tam giác ACF vuông tại C .
5 , Cho hình vuông ABCD . Trên BC lấy điểm E . Từ A kẻ vuông góc với AE cắtt CD tạ F . Gọi I là trung điểm của EF . M là giao điểm của AI và CD . Qua E kẻ đường thẳng song song với CD cắt AI tại N .
a , Chứng minh rằng MENF là hình thang
b , Chứng minh rằng chu vi tam giác CME không đổi khi E chuyển động trên BC .
Cho \(\left(O;\dfrac{AB}{2}\right)\) . Trên OC lấy B. Gọi M là trung điểmt của AB. Từ M kẻ DE vuông góc với AB. Từ B kẻ BF vuông góc với CD. Gọi S là giao điểm của BD và MF, CS cắt AD , DE tại H, K. CMR : \(\dfrac{DA}{DH}+\dfrac{DB}{DS}=\dfrac{DE}{DK}\)